Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplass Structured version   Visualization version   GIF version

Theorem tendoplass 36592
 Description: The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplass (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendoplass
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 468 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpr1 1233 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑆𝐸)
3 simpr2 1235 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑈𝐸)
4 tendopl.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 tendopl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 tendopl.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 tendopl.p . . . . 5 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
84, 5, 6, 7tendoplcl 36590 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑈𝐸) → (𝑆𝑃𝑈) ∈ 𝐸)
91, 2, 3, 8syl3anc 1476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑃𝑈) ∈ 𝐸)
10 simpr3 1237 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑉𝐸)
114, 5, 6, 7tendoplcl 36590 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸) → ((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸)
121, 9, 10, 11syl3anc 1476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸)
134, 5, 6, 7tendoplcl 36590 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
141, 3, 10, 13syl3anc 1476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑈𝑃𝑉) ∈ 𝐸)
154, 5, 6, 7tendoplcl 36590 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) → (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸)
161, 2, 14, 15syl3anc 1476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸)
17 coass 5798 . . . . 5 (((𝑆𝑔) ∘ (𝑈𝑔)) ∘ (𝑉𝑔)) = ((𝑆𝑔) ∘ ((𝑈𝑔) ∘ (𝑉𝑔)))
18 simplr1 1260 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑆𝐸)
19 simplr2 1262 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑈𝐸)
20 simpr 471 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑔𝑇)
217, 5tendopl2 36586 . . . . . . 7 ((𝑆𝐸𝑈𝐸𝑔𝑇) → ((𝑆𝑃𝑈)‘𝑔) = ((𝑆𝑔) ∘ (𝑈𝑔)))
2218, 19, 20, 21syl3anc 1476 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃𝑈)‘𝑔) = ((𝑆𝑔) ∘ (𝑈𝑔)))
2322coeq1d 5422 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)) = (((𝑆𝑔) ∘ (𝑈𝑔)) ∘ (𝑉𝑔)))
24 simplr3 1264 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑉𝐸)
257, 5tendopl2 36586 . . . . . . 7 ((𝑈𝐸𝑉𝐸𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
2619, 24, 20, 25syl3anc 1476 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
2726coeq2d 5423 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)) = ((𝑆𝑔) ∘ ((𝑈𝑔) ∘ (𝑉𝑔))))
2817, 23, 273eqtr4a 2831 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)) = ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)))
299adantr 466 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑃𝑈) ∈ 𝐸)
307, 5tendopl2 36586 . . . . 5 (((𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸𝑔𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)))
3129, 24, 20, 30syl3anc 1476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)))
3214adantr 466 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑃𝑉) ∈ 𝐸)
337, 5tendopl2 36586 . . . . 5 ((𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸𝑔𝑇) → ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔) = ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)))
3418, 32, 20, 33syl3anc 1476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔) = ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)))
3528, 31, 343eqtr4d 2815 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔))
3635ralrimiva 3115 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ∀𝑔𝑇 (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔))
374, 5, 6tendoeq1 36573 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸 ∧ (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸) ∧ ∀𝑔𝑇 (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))
381, 12, 16, 36, 37syl121anc 1481 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  ∀wral 3061   ↦ cmpt 4863   ∘ ccom 5253  ‘cfv 6031  (class class class)co 6793   ↦ cmpt2 6795  HLchlt 35159  LHypclh 35792  LTrncltrn 35909  TEndoctendo 36561 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-undef 7551  df-map 8011  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968  df-tendo 36564 This theorem is referenced by:  erngdvlem1  36797  erngdvlem1-rN  36805
 Copyright terms: Public domain W3C validator