Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocan Structured version   Visualization version   GIF version

Theorem tendocan 36606
Description: Cancellation law: if the values of two trace-preserving endormorphisms are equal, so are the endormorphisms. Lemma J of [Crawley] p. 118. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendocan.b 𝐵 = (Base‘𝐾)
tendocan.h 𝐻 = (LHyp‘𝐾)
tendocan.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendocan.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocan (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑉)

Proof of Theorem tendocan
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simp1l 1237 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL)
2 simp1r 1238 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑊𝐻)
3 simp21 1246 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
4 simp22 1247 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
5 simp11 1243 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp12 1244 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)))
7 simp13l 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
8 simp13r 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
9 simp2 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → 𝑇)
107, 8, 93jca 1122 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇))
11 simp3 1132 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → ≠ ( I ↾ 𝐵))
12 tendocan.b . . . . . 6 𝐵 = (Base‘𝐾)
13 tendocan.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 tendocan.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 eqid 2752 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
16 tendocan.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
1712, 13, 14, 15, 16cdlemj3 36605 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))
185, 6, 10, 11, 17syl31anc 1476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))
19183exp 1112 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑇 → ( ≠ ( I ↾ 𝐵) → (𝑈) = (𝑉))))
2019ralrimiv 3095 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ∀𝑇 ( ≠ ( I ↾ 𝐵) → (𝑈) = (𝑉)))
2112, 13, 14, 16tendoeq2 36556 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑇 ( ≠ ( I ↾ 𝐵) → (𝑈) = (𝑉))) → 𝑈 = 𝑉)
221, 2, 3, 4, 20, 21syl221anc 1484 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wral 3042   I cid 5165  cres 5260  cfv 6041  Basecbs 16051  HLchlt 35132  LHypclh 35765  LTrncltrn 35882  trLctrl 35940  TEndoctendo 36534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-riotaBAD 34734
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-undef 7560  df-map 8017  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-clat 17301  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-llines 35279  df-lplanes 35280  df-lvols 35281  df-lines 35282  df-psubsp 35284  df-pmap 35285  df-padd 35577  df-lhyp 35769  df-laut 35770  df-ldil 35885  df-ltrn 35886  df-trl 35941  df-tendo 36537
This theorem is referenced by:  tendoid0  36607  tendo0mul  36608  tendo0mulr  36609  cdleml3N  36760  cdleml8  36765
  Copyright terms: Public domain W3C validator