Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo1mulr Structured version   Visualization version   GIF version

Theorem tendo1mulr 36580
Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendo1mulr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)

Proof of Theorem tendo1mulr
StepHypRef Expression
1 tendof.h . . 3 𝐻 = (LHyp‘𝐾)
2 tendof.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendof.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 36572 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → 𝑈:𝑇𝑇)
5 fcoi1 6218 . 2 (𝑈:𝑇𝑇 → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
64, 5syl 17 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145   I cid 5156  cres 5251  ccom 5253  wf 6027  cfv 6031  HLchlt 35159  LHypclh 35792  LTrncltrn 35909  TEndoctendo 36561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-tendo 36564
This theorem is referenced by:  erng1lem  36796  erngdvlem3  36799  erngdvlem3-rN  36807  erngdvlem4-rN  36808  dvhopN  36926  diclspsn  37004  dih1dimatlem0  37138
  Copyright terms: Public domain W3C validator