MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfzslem Structured version   Visualization version   GIF version

Theorem telgsumfzslem 18506
Description: Lemma for telgsumfzs 18507 (induction step). (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfzs.b 𝐵 = (Base‘𝐺)
telgsumfzs.g (𝜑𝐺 ∈ Abel)
telgsumfzs.m = (-g𝐺)
Assertion
Ref Expression
telgsumfzslem ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑖,𝑀,𝑘   ,𝑖   𝜑,𝑖   𝑦,𝑖,𝑘
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑦)   𝐶(𝑦,𝑘)   𝐺(𝑦,𝑘)   𝑀(𝑦)   (𝑦,𝑘)

Proof of Theorem telgsumfzslem
StepHypRef Expression
1 telgsumfzs.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2724 . . . . 5 (+g𝐺) = (+g𝐺)
3 telgsumfzs.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
43adantr 472 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝐺 ∈ Abel)
5 ablcmn 18320 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
64, 5syl 17 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝐺 ∈ CMnd)
76adantl 473 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ CMnd)
8 fzfid 12887 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑀...(𝑦 + 1)) ∈ Fin)
9 ablgrp 18319 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
103, 9syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
1110ad2antrl 766 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ Grp)
1211adantr 472 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → 𝐺 ∈ Grp)
13 fzelp1 12507 . . . . . . 7 (𝑖 ∈ (𝑀...(𝑦 + 1)) → 𝑖 ∈ (𝑀...((𝑦 + 1) + 1)))
14 simpr 479 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)
1514adantl 473 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)
16 rspcsbela 4114 . . . . . . 7 ((𝑖 ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝑖 / 𝑘𝐶𝐵)
1713, 15, 16syl2anr 496 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → 𝑖 / 𝑘𝐶𝐵)
18 fzp1elp1 12508 . . . . . . 7 (𝑖 ∈ (𝑀...(𝑦 + 1)) → (𝑖 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
19 rspcsbela 4114 . . . . . . 7 (((𝑖 + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝑖 + 1) / 𝑘𝐶𝐵)
2018, 15, 19syl2anr 496 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → (𝑖 + 1) / 𝑘𝐶𝐵)
21 telgsumfzs.m . . . . . . 7 = (-g𝐺)
221, 21grpsubcl 17617 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑖 / 𝑘𝐶𝐵(𝑖 + 1) / 𝑘𝐶𝐵) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
2312, 17, 20, 22syl3anc 1439 . . . . 5 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
24 fzp1disj 12513 . . . . . 6 ((𝑀...𝑦) ∩ {(𝑦 + 1)}) = ∅
2524a1i 11 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑀...𝑦) ∩ {(𝑦 + 1)}) = ∅)
26 fzsuc 12502 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
2726adantr 472 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
281, 2, 7, 8, 23, 25, 27gsummptfidmsplit 18451 . . . 4 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))))
2928adantr 472 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))))
30 simpr 479 . . . 4 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))
31 grpmnd 17551 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3210, 31syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
3332ad2antrl 766 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ Mnd)
34 ovexd 6795 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑦 + 1) ∈ V)
35 peano2uz 11855 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (ℤ𝑀))
36 eluzfz2 12463 . . . . . . . . . 10 ((𝑦 + 1) ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...(𝑦 + 1)))
3735, 36syl 17 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...(𝑦 + 1)))
38 fzelp1 12507 . . . . . . . . 9 ((𝑦 + 1) ∈ (𝑀...(𝑦 + 1)) → (𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
3937, 38syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
40 rspcsbela 4114 . . . . . . . 8 (((𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝑦 + 1) / 𝑘𝐶𝐵)
4139, 14, 40syl2an 495 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑦 + 1) / 𝑘𝐶𝐵)
42 peano2uz 11855 . . . . . . . . . 10 ((𝑦 + 1) ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ𝑀))
4335, 42syl 17 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ𝑀))
44 eluzfz2 12463 . . . . . . . . 9 (((𝑦 + 1) + 1) ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
4543, 44syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
46 rspcsbela 4114 . . . . . . . 8 ((((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ((𝑦 + 1) + 1) / 𝑘𝐶𝐵)
4745, 14, 46syl2an 495 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑦 + 1) + 1) / 𝑘𝐶𝐵)
481, 21grpsubcl 17617 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 + 1) / 𝑘𝐶𝐵((𝑦 + 1) + 1) / 𝑘𝐶𝐵) → ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶) ∈ 𝐵)
4911, 41, 47, 48syl3anc 1439 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶) ∈ 𝐵)
50 csbeq1 3642 . . . . . . . 8 (𝑖 = (𝑦 + 1) → 𝑖 / 𝑘𝐶 = (𝑦 + 1) / 𝑘𝐶)
51 oveq1 6772 . . . . . . . . 9 (𝑖 = (𝑦 + 1) → (𝑖 + 1) = ((𝑦 + 1) + 1))
5251csbeq1d 3646 . . . . . . . 8 (𝑖 = (𝑦 + 1) → (𝑖 + 1) / 𝑘𝐶 = ((𝑦 + 1) + 1) / 𝑘𝐶)
5350, 52oveq12d 6783 . . . . . . 7 (𝑖 = (𝑦 + 1) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5453adantl 473 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 = (𝑦 + 1)) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
551, 33, 34, 49, 54gsumsnd 18473 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5655adantr 472 . . . 4 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5730, 56oveq12d 6783 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))) = ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
58 eluzfz1 12462 . . . . . . 7 (((𝑦 + 1) + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...((𝑦 + 1) + 1)))
5943, 58syl 17 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...((𝑦 + 1) + 1)))
60 rspcsbela 4114 . . . . . 6 ((𝑀 ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
6159, 14, 60syl2an 495 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝑀 / 𝑘𝐶𝐵)
621, 2, 21grpnpncan 17632 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 / 𝑘𝐶𝐵(𝑦 + 1) / 𝑘𝐶𝐵((𝑦 + 1) + 1) / 𝑘𝐶𝐵)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6311, 61, 41, 47, 62syl13anc 1441 . . . 4 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6463adantr 472 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6529, 57, 643eqtrd 2762 . 2 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6665ex 449 1 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wral 3014  Vcvv 3304  csb 3639  cun 3678  cin 3679  c0 4023  {csn 4285  cmpt 4837  cfv 6001  (class class class)co 6765  1c1 10050   + caddc 10052  cuz 11800  ...cfz 12440  Basecbs 15980  +gcplusg 16064   Σg cgsu 16224  Mndcmnd 17416  Grpcgrp 17544  -gcsg 17546  CMndccmn 18314  Abelcabl 18315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-seq 12917  df-hash 13233  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-0g 16225  df-gsum 16226  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-grp 17547  df-minusg 17548  df-sbg 17549  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-abl 18317
This theorem is referenced by:  telgsumfzs  18507
  Copyright terms: Public domain W3C validator