![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdeglem2 | Structured version Visualization version GIF version |
Description: Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
tdeglem2 | ⊢ (ℎ ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (ℎ‘∅)) = (ℎ ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (ℂfld Σg ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8031 | . . . . . . 7 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → ℎ:{∅}⟶ℕ0) | |
2 | 1 | feqmptd 6391 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → ℎ = (𝑥 ∈ {∅} ↦ (ℎ‘𝑥))) |
3 | 2 | oveq2d 6809 | . . . . 5 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → (ℂfld Σg ℎ) = (ℂfld Σg (𝑥 ∈ {∅} ↦ (ℎ‘𝑥)))) |
4 | cnring 19983 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
5 | ringmnd 18764 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
6 | 4, 5 | mp1i 13 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → ℂfld ∈ Mnd) |
7 | 0ex 4924 | . . . . . . 7 ⊢ ∅ ∈ V | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → ∅ ∈ V) |
9 | 7 | snid 4347 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
10 | ffvelrn 6500 | . . . . . . . 8 ⊢ ((ℎ:{∅}⟶ℕ0 ∧ ∅ ∈ {∅}) → (ℎ‘∅) ∈ ℕ0) | |
11 | 1, 9, 10 | sylancl 574 | . . . . . . 7 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → (ℎ‘∅) ∈ ℕ0) |
12 | 11 | nn0cnd 11555 | . . . . . 6 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → (ℎ‘∅) ∈ ℂ) |
13 | cnfldbas 19965 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
14 | fveq2 6332 | . . . . . . 7 ⊢ (𝑥 = ∅ → (ℎ‘𝑥) = (ℎ‘∅)) | |
15 | 13, 14 | gsumsn 18561 | . . . . . 6 ⊢ ((ℂfld ∈ Mnd ∧ ∅ ∈ V ∧ (ℎ‘∅) ∈ ℂ) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (ℎ‘𝑥))) = (ℎ‘∅)) |
16 | 6, 8, 12, 15 | syl3anc 1476 | . . . . 5 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → (ℂfld Σg (𝑥 ∈ {∅} ↦ (ℎ‘𝑥))) = (ℎ‘∅)) |
17 | 3, 16 | eqtrd 2805 | . . . 4 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 {∅}) → (ℂfld Σg ℎ) = (ℎ‘∅)) |
18 | df1o2 7726 | . . . . 5 ⊢ 1𝑜 = {∅} | |
19 | 18 | oveq2i 6804 | . . . 4 ⊢ (ℕ0 ↑𝑚 1𝑜) = (ℕ0 ↑𝑚 {∅}) |
20 | 17, 19 | eleq2s 2868 | . . 3 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 1𝑜) → (ℂfld Σg ℎ) = (ℎ‘∅)) |
21 | 20 | eqcomd 2777 | . 2 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 1𝑜) → (ℎ‘∅) = (ℂfld Σg ℎ)) |
22 | 21 | mpteq2ia 4874 | 1 ⊢ (ℎ ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (ℎ‘∅)) = (ℎ ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (ℂfld Σg ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∅c0 4063 {csn 4316 ↦ cmpt 4863 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 1𝑜c1o 7706 ↑𝑚 cmap 8009 ℂcc 10136 ℕ0cn0 11494 Σg cgsu 16309 Mndcmnd 17502 Ringcrg 18755 ℂfldccnfld 19961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-gsum 16311 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-mgp 18698 df-ring 18757 df-cring 18758 df-cnfld 19962 |
This theorem is referenced by: deg1ldg 24072 deg1leb 24075 deg1val 24076 |
Copyright terms: Public domain | W3C validator |