![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tchphl | Structured version Visualization version GIF version |
Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space because all the original components are the same. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
tchval.n | ⊢ 𝐺 = (toℂHil‘𝑊) |
Ref | Expression |
---|---|
tchphl | ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2772 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝑊)) | |
2 | tchval.n | . . . . 5 ⊢ 𝐺 = (toℂHil‘𝑊) | |
3 | eqid 2771 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | tchbas 23237 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝐺) |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝑊) = (Base‘𝐺)) |
6 | eqid 2771 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
7 | 2, 6 | tchplusg 23238 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝐺) |
8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → (+g‘𝑊) = (+g‘𝐺)) |
9 | 8 | oveqdr 6819 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
10 | eqidd 2772 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
11 | eqid 2771 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
12 | 2, 11 | tchsca 23241 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝐺) |
13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → (Scalar‘𝑊) = (Scalar‘𝐺)) |
14 | eqid 2771 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
15 | eqid 2771 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
16 | 2, 15 | tchvsca 23242 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺) |
17 | 16 | a1i 11 | . . . 4 ⊢ (⊤ → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝐺)) |
18 | 17 | oveqdr 6819 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘𝑊)𝑦) = (𝑥( ·𝑠 ‘𝐺)𝑦)) |
19 | eqid 2771 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
20 | 2, 19 | tchip 23243 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝐺) |
21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → (·𝑖‘𝑊) = (·𝑖‘𝐺)) |
22 | 21 | oveqdr 6819 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝐺)𝑦)) |
23 | 1, 5, 9, 10, 13, 14, 18, 22 | phlpropd 20217 | . 2 ⊢ (⊤ → (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil)) |
24 | 23 | trud 1641 | 1 ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ⊤wtru 1632 ∈ wcel 2145 ‘cfv 6031 Basecbs 16064 +gcplusg 16149 Scalarcsca 16152 ·𝑠 cvsca 16153 ·𝑖cip 16154 PreHilcphl 20186 toℂHilctch 23186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ds 16172 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-grp 17633 df-ghm 17866 df-mgp 18698 df-ur 18710 df-ring 18757 df-lmod 19075 df-lmhm 19235 df-lvec 19316 df-sra 19387 df-rgmod 19388 df-phl 20188 df-tng 22609 df-tch 23188 |
This theorem is referenced by: tchcph 23255 |
Copyright terms: Public domain | W3C validator |