MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcphlem2 Structured version   Visualization version   GIF version

Theorem tchcphlem2 23253
Description: Lemma for tchcph 23254: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n 𝐺 = (toℂHil‘𝑊)
tchcph.v 𝑉 = (Base‘𝑊)
tchcph.f 𝐹 = (Scalar‘𝑊)
tchcph.1 (𝜑𝑊 ∈ PreHil)
tchcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tchcph.h , = (·𝑖𝑊)
tchcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tchcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tchcph.k 𝐾 = (Base‘𝐹)
tchcph.s · = ( ·𝑠𝑊)
tchcphlem2.3 (𝜑𝑋𝐾)
tchcphlem2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tchcphlem2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥, ·   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tchcphlem2
StepHypRef Expression
1 tchval.n . . . . . . 7 𝐺 = (toℂHil‘𝑊)
2 tchcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 tchcph.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
4 tchcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 tchcph.2 . . . . . . 7 (𝜑𝐹 = (ℂflds 𝐾))
61, 2, 3, 4, 5tchclm 23249 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
7 tchcph.k . . . . . . 7 𝐾 = (Base‘𝐹)
83, 7clmsscn 23097 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
10 tchcphlem2.3 . . . . 5 (𝜑𝑋𝐾)
119, 10sseldd 3751 . . . 4 (𝜑𝑋 ∈ ℂ)
1211cjmulrcld 14153 . . 3 (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ)
1311cjmulge0d 14155 . . 3 (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋)))
14 tchcphlem2.4 . . . 4 (𝜑𝑌𝑉)
15 tchcph.h . . . . 5 , = (·𝑖𝑊)
161, 2, 3, 4, 5, 15tchcphlem3 23250 . . . 4 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
1714, 16mpdan 659 . . 3 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
18 oveq12 6801 . . . . . 6 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
1918anidms 548 . . . . 5 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
2019breq2d 4796 . . . 4 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
21 tchcph.4 . . . . 5 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
2221ralrimiva 3114 . . . 4 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
2320, 22, 14rspcdva 3464 . . 3 (𝜑 → 0 ≤ (𝑌 , 𝑌))
2412, 13, 17, 23sqrtmuld 14370 . 2 (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
25 phllmod 20191 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
264, 25syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
27 tchcph.s . . . . . . 7 · = ( ·𝑠𝑊)
282, 3, 27, 7lmodvscl 19089 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
2926, 10, 14, 28syl3anc 1475 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝑉)
30 eqid 2770 . . . . . 6 (.r𝐹) = (.r𝐹)
31 eqid 2770 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
323, 15, 2, 7, 27, 30, 31ipassr 20207 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉𝑌𝑉𝑋𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
334, 29, 14, 10, 32syl13anc 1477 . . . 4 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
343clmmul 23093 . . . . . 6 (𝑊 ∈ ℂMod → · = (.r𝐹))
356, 34syl 17 . . . . 5 (𝜑 → · = (.r𝐹))
3635oveqd 6809 . . . . . 6 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
373, 15, 2, 7, 27, 30ipass 20206 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝑋𝐾𝑌𝑉𝑌𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
384, 10, 14, 14, 37syl13anc 1477 . . . . . 6 (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
3936, 38eqtr4d 2807 . . . . 5 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌))
403clmcj 23094 . . . . . . 7 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
416, 40syl 17 . . . . . 6 (𝜑 → ∗ = (*𝑟𝐹))
4241fveq1d 6334 . . . . 5 (𝜑 → (∗‘𝑋) = ((*𝑟𝐹)‘𝑋))
4335, 39, 42oveq123d 6813 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
4417recnd 10269 . . . . 5 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
4511cjcld 14143 . . . . 5 (𝜑 → (∗‘𝑋) ∈ ℂ)
4611, 44, 45mul32d 10447 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4733, 43, 463eqtr2d 2810 . . 3 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4847fveq2d 6336 . 2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))))
49 absval 14185 . . . 4 (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5011, 49syl 17 . . 3 (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5150oveq1d 6807 . 2 (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
5224, 48, 513eqtr4d 2814 1 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wss 3721   class class class wbr 4784  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137   · cmul 10142  cle 10276  ccj 14043  csqrt 14180  abscabs 14181  Basecbs 16063  s cress 16064  .rcmulr 16149  *𝑟cstv 16150  Scalarcsca 16151   ·𝑠 cvsca 16152  ·𝑖cip 16153  LModclmod 19072  fldccnfld 19960  PreHilcphl 20185  ℂModcclm 23080  toℂHilctch 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-rp 12035  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-grp 17632  df-subg 17798  df-ghm 17865  df-cmn 18401  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-rnghom 18924  df-drng 18958  df-subrg 18987  df-staf 19054  df-srng 19055  df-lmod 19074  df-lmhm 19234  df-lvec 19315  df-sra 19386  df-rgmod 19387  df-cnfld 19961  df-phl 20187  df-clm 23081
This theorem is referenced by:  tchcph  23254
  Copyright terms: Public domain W3C validator