![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tchcphlem2 | Structured version Visualization version GIF version |
Description: Lemma for tchcph 23254: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
tchval.n | ⊢ 𝐺 = (toℂHil‘𝑊) |
tchcph.v | ⊢ 𝑉 = (Base‘𝑊) |
tchcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
tchcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
tchcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
tchcph.h | ⊢ , = (·𝑖‘𝑊) |
tchcph.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) |
tchcph.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
tchcph.k | ⊢ 𝐾 = (Base‘𝐹) |
tchcph.s | ⊢ · = ( ·𝑠 ‘𝑊) |
tchcphlem2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
tchcphlem2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
tchcphlem2 | ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tchval.n | . . . . . . 7 ⊢ 𝐺 = (toℂHil‘𝑊) | |
2 | tchcph.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
3 | tchcph.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | tchcph.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
5 | tchcph.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
6 | 1, 2, 3, 4, 5 | tchclm 23249 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
7 | tchcph.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 3, 7 | clmsscn 23097 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
10 | tchcphlem2.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
11 | 9, 10 | sseldd 3751 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
12 | 11 | cjmulrcld 14153 | . . 3 ⊢ (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ) |
13 | 11 | cjmulge0d 14155 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋))) |
14 | tchcphlem2.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
15 | tchcph.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
16 | 1, 2, 3, 4, 5, 15 | tchcphlem3 23250 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ ℝ) |
17 | 14, 16 | mpdan 659 | . . 3 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℝ) |
18 | oveq12 6801 | . . . . . 6 ⊢ ((𝑥 = 𝑌 ∧ 𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌)) | |
19 | 18 | anidms 548 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
20 | 19 | breq2d 4796 | . . . 4 ⊢ (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌))) |
21 | tchcph.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) | |
22 | 21 | ralrimiva 3114 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
23 | 20, 22, 14 | rspcdva 3464 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑌 , 𝑌)) |
24 | 12, 13, 17, 23 | sqrtmuld 14370 | . 2 ⊢ (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
25 | phllmod 20191 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
26 | 4, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
27 | tchcph.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
28 | 2, 3, 27, 7 | lmodvscl 19089 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
29 | 26, 10, 14, 28 | syl3anc 1475 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑉) |
30 | eqid 2770 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
31 | eqid 2770 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
32 | 3, 15, 2, 7, 27, 30, 31 | ipassr 20207 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
33 | 4, 29, 14, 10, 32 | syl13anc 1477 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
34 | 3 | clmmul 23093 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐹)) |
36 | 35 | oveqd 6809 | . . . . . 6 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
37 | 3, 15, 2, 7, 27, 30 | ipass 20206 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
38 | 4, 10, 14, 14, 37 | syl13anc 1477 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
39 | 36, 38 | eqtr4d 2807 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌)) |
40 | 3 | clmcj 23094 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
41 | 6, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) |
42 | 41 | fveq1d 6334 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) = ((*𝑟‘𝐹)‘𝑋)) |
43 | 35, 39, 42 | oveq123d 6813 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
44 | 17 | recnd 10269 | . . . . 5 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℂ) |
45 | 11 | cjcld 14143 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
46 | 11, 44, 45 | mul32d 10447 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
47 | 33, 43, 46 | 3eqtr2d 2810 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
48 | 47 | fveq2d 6336 | . 2 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))) |
49 | absval 14185 | . . . 4 ⊢ (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) | |
50 | 11, 49 | syl 17 | . . 3 ⊢ (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) |
51 | 50 | oveq1d 6807 | . 2 ⊢ (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
52 | 24, 48, 51 | 3eqtr4d 2814 | 1 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 ℂcc 10135 ℝcr 10136 0cc0 10137 · cmul 10142 ≤ cle 10276 ∗ccj 14043 √csqrt 14180 abscabs 14181 Basecbs 16063 ↾s cress 16064 .rcmulr 16149 *𝑟cstv 16150 Scalarcsca 16151 ·𝑠 cvsca 16152 ·𝑖cip 16153 LModclmod 19072 ℂfldccnfld 19960 PreHilcphl 20185 ℂModcclm 23080 toℂHilctch 23185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-rp 12035 df-fz 12533 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-grp 17632 df-subg 17798 df-ghm 17865 df-cmn 18401 df-mgp 18697 df-ur 18709 df-ring 18756 df-cring 18757 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-rnghom 18924 df-drng 18958 df-subrg 18987 df-staf 19054 df-srng 19055 df-lmod 19074 df-lmhm 19234 df-lvec 19315 df-sra 19386 df-rgmod 19387 df-cnfld 19961 df-phl 20187 df-clm 23081 |
This theorem is referenced by: tchcph 23254 |
Copyright terms: Public domain | W3C validator |