![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcel | Structured version Visualization version GIF version |
Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
Ref | Expression |
---|---|
tc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tcel | ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcvalg 8787 | . 2 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
2 | ssel 3738 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑥 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑥)) | |
3 | trss 4913 | . . . . . . . . 9 ⊢ (Tr 𝑥 → (𝐵 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) | |
4 | 3 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥)) |
5 | 2, 4 | syl6com 37 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥))) |
6 | 5 | impd 446 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐵 ⊆ 𝑥)) |
7 | simpr 479 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → Tr 𝑥) | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → Tr 𝑥)) |
9 | 6, 8 | jcad 556 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐵 ⊆ 𝑥 ∧ Tr 𝑥))) |
10 | 9 | ss2abdv 3816 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
11 | intss 4650 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
13 | tc2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
14 | tcvalg 8787 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
15 | 13, 14 | ax-mp 5 | . . 3 ⊢ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
16 | 12, 15 | syl6sseqr 3793 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴)) |
17 | 1, 16 | eqsstrd 3780 | 1 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 Vcvv 3340 ⊆ wss 3715 ∩ cint 4627 Tr wtr 4904 ‘cfv 6049 TCctc 8785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-tc 8786 |
This theorem is referenced by: tcrank 8920 hsmexlem4 9443 |
Copyright terms: Public domain | W3C validator |