Step | Hyp | Ref
| Expression |
1 | | taylth.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | | taylth.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
3 | | fz1ssfz0 12649 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
4 | | taylthlem2.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) |
5 | | fzofzp1 12779 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁)) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
7 | 3, 6 | sseldi 3742 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ (0...𝑁)) |
8 | | fznn0sub2 12660 |
. . . . . . . . . 10
⊢ ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
10 | | elfznn0 12646 |
. . . . . . . . 9
⊢ ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
12 | | dvnfre 23934 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
13 | 2, 1, 11, 12 | syl3anc 1477 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
14 | | reelprrecn 10240 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
16 | | cnex 10229 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
17 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
18 | | reex 10239 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
20 | | ax-resscn 10205 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
21 | | fss 6217 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝐴⟶ℂ) |
22 | 2, 20, 21 | sylancl 697 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
23 | | elpm2r 8043 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
24 | 17, 19, 22, 1, 23 | syl22anc 1478 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
25 | | dvnbss 23910 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
26 | 15, 24, 11, 25 | syl3anc 1477 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
27 | | fdm 6212 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴) |
28 | 2, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝐴) |
29 | 26, 28 | sseqtrd 3782 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴) |
30 | | taylth.d |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) = 𝐴) |
31 | | dvn2bss 23912 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
32 | 15, 24, 9, 31 | syl3anc 1477 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
33 | 30, 32 | eqsstr3d 3781 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))) |
34 | 29, 33 | eqssd 3761 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴) |
35 | 34 | feq2d 6192 |
. . . . . . 7
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)) |
36 | 13, 35 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ) |
37 | 36 | ffvelrnda 6523 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
38 | 1 | sselda 3744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
39 | | fvres 6369 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ →
((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
40 | 39 | adantl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
41 | | resubdrg 20176 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
42 | 41 | simpli 476 |
. . . . . . . . . . 11
⊢ ℝ
∈ (SubRing‘ℂfld) |
43 | 42 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
(SubRing‘ℂfld)) |
44 | | taylth.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
45 | 44 | nnnn0d 11563 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
46 | | taylth.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
47 | 46, 30 | eleqtrrd 2842 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
48 | | taylth.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
49 | 1, 46 | sseldd 3745 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
50 | 2 | adantr 472 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐹:𝐴⟶ℝ) |
51 | 1 | adantr 472 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ⊆ ℝ) |
52 | | elfznn0 12646 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
53 | 52 | adantl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
54 | | dvnfre 23934 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
55 | 50, 51, 53, 54 | syl3anc 1477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛
𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
56 | 14 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ℝ ∈ {ℝ,
ℂ}) |
57 | 24 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
58 | | simpr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) |
59 | | dvn2bss 23912 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝑘 ∈
(0...𝑁)) → dom
((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
60 | 56, 57, 58, 59 | syl3anc 1477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
61 | 47 | adantr 472 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
62 | 60, 61 | sseldd 3745 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑘)) |
63 | 55, 62 | ffvelrnd 6524 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) ∈ ℝ) |
64 | | faccl 13284 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
65 | 53, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
66 | 63, 65 | nndivred 11281 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ) |
67 | 15, 22, 1, 45, 47, 48, 43, 49, 66 | taylply2 24341 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧
(deg‘𝑇) ≤ 𝑁)) |
68 | 67 | simpld 477 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈
(Poly‘ℝ)) |
69 | | dvnply2 24261 |
. . . . . . . . . 10
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
70 | 43, 68, 11, 69 | syl3anc 1477 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
71 | | plyreres 24257 |
. . . . . . . . 9
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
72 | 70, 71 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
73 | 72 | ffvelrnda 6523 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈
ℝ) |
74 | 40, 73 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
75 | 38, 74 | syldan 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
76 | 37, 75 | resubcld 10670 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ) |
77 | | eqid 2760 |
. . . 4
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
78 | 76, 77 | fmptd 6549 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ) |
79 | 49 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ ℝ) |
80 | 38, 79 | resubcld 10670 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦 − 𝐵) ∈ ℝ) |
81 | | elfzouz 12688 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈
(ℤ≥‘1)) |
82 | 4, 81 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
83 | | nnuz 11936 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
84 | 82, 83 | syl6eleqr 2850 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
85 | 84 | nnnn0d 11563 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
86 | 85 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑀 ∈
ℕ0) |
87 | | 1nn0 11520 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
88 | 87 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 1 ∈
ℕ0) |
89 | 86, 88 | nn0addcld 11567 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑀 + 1) ∈
ℕ0) |
90 | 80, 89 | reexpcld 13239 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℝ) |
91 | | eqid 2760 |
. . . 4
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
92 | 90, 91 | fmptd 6549 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℝ) |
93 | | retop 22786 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
94 | | uniretop 22787 |
. . . . . . 7
⊢ ℝ =
∪ (topGen‘ran (,)) |
95 | 94 | ntrss2 21083 |
. . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
96 | 93, 1, 95 | sylancr 698 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
97 | 44 | nncnd 11248 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
98 | 84 | nncnd 11248 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
99 | | 1cnd 10268 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
100 | 97, 98, 99 | nppcan2d 10630 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁 − 𝑀)) |
101 | 100 | fveq2d 6357 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
102 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
103 | | dvnp1 23907 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
104 | 102, 24, 11, 103 | syl3anc 1477 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
105 | 101, 104 | eqtr3d 2796 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
106 | 105 | dmeqd 5481 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
107 | | fzonnsub 12707 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) |
108 | 4, 107 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ) |
109 | 108 | nnnn0d 11563 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈
ℕ0) |
110 | | dvnbss 23910 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
111 | 15, 24, 109, 110 | syl3anc 1477 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
112 | 111, 28 | sseqtrd 3782 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ 𝐴) |
113 | | elfzofz 12699 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁)) |
114 | 4, 113 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
115 | 3, 114 | sseldi 3742 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
116 | | fznn0sub2 12660 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ (0...𝑁)) |
117 | 115, 116 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈ (0...𝑁)) |
118 | | dvn2bss 23912 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
119 | 15, 24, 117, 118 | syl3anc 1477 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
120 | 30, 119 | eqsstr3d 3781 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))) |
121 | 112, 120 | eqssd 3761 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = 𝐴) |
122 | 106, 121 | eqtr3d 2796 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) |
123 | | fss 6217 |
. . . . . . . 8
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
124 | 36, 20, 123 | sylancl 697 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
125 | | eqid 2760 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
126 | 125 | tgioo2 22827 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
127 | 102, 124,
1, 126, 125 | dvbssntr 23883 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆
((int‘(topGen‘ran (,)))‘𝐴)) |
128 | 122, 127 | eqsstr3d 3781 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ((int‘(topGen‘ran
(,)))‘𝐴)) |
129 | 96, 128 | eqssd 3761 |
. . . 4
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴) |
130 | 94 | isopn3 21092 |
. . . . 5
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
131 | 93, 1, 130 | sylancr 698 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
132 | 129, 131 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (topGen‘ran
(,))) |
133 | | eqid 2760 |
. . 3
⊢ (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵}) |
134 | | difss 3880 |
. . . 4
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
135 | 37 | recnd 10280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
136 | | dvnf 23909 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
137 | 15, 24, 109, 136 | syl3anc 1477 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
138 | 121 | feq2d 6192 |
. . . . . . . . 9
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ)) |
139 | 137, 138 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ) |
140 | 139 | ffvelrnda 6523 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
141 | | dvnfre 23934 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
142 | 2, 1, 109, 141 | syl3anc 1477 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
143 | 121 | feq2d 6192 |
. . . . . . . . . 10
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ)) |
144 | 142, 143 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ) |
145 | 144 | feqmptd 6412 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
146 | 36 | feqmptd 6412 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
147 | 146 | oveq2d 6830 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
148 | 105, 145,
147 | 3eqtr3rd 2803 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
149 | 75 | recnd 10280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
150 | | fvexd 6365 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ V) |
151 | 74 | recnd 10280 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
152 | | recn 10238 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
153 | | dvnply2 24261 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
154 | 43, 68, 109, 153 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
155 | | plyf 24173 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
156 | 154, 155 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
157 | 156 | ffvelrnda 6523 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
158 | 152, 157 | sylan2 492 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
159 | 125 | cnfldtopon 22807 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
160 | | toponmax 20952 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) |
161 | 159, 160 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
(TopOpen‘ℂfld)) |
162 | | df-ss 3729 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) |
163 | 102, 162 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ ∩ ℂ) =
ℝ) |
164 | | plyf 24173 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
165 | 70, 164 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
166 | 165 | ffvelrnda 6523 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
167 | 100 | fveq2d 6357 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))) |
168 | | ssid 3765 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
169 | 168 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
170 | | mapsspm 8059 |
. . . . . . . . . . . . 13
⊢ (ℂ
↑𝑚 ℂ) ⊆ (ℂ ↑pm
ℂ) |
171 | | plyf 24173 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ (Poly‘ℝ)
→ 𝑇:ℂ⟶ℂ) |
172 | 68, 171 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇:ℂ⟶ℂ) |
173 | 16, 16 | elmap 8054 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (ℂ
↑𝑚 ℂ) ↔ 𝑇:ℂ⟶ℂ) |
174 | 172, 173 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑𝑚
ℂ)) |
175 | 170, 174 | sseldi 3742 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑pm
ℂ)) |
176 | | dvnp1 23907 |
. . . . . . . . . . . 12
⊢ ((ℂ
⊆ ℂ ∧ 𝑇
∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
177 | 169, 175,
11, 176 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
178 | 167, 177 | eqtr3d 2796 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
179 | 156 | feqmptd 6412 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
180 | 165 | feqmptd 6412 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
181 | 180 | oveq2d 6830 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
182 | 178, 179,
181 | 3eqtr3rd 2803 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
183 | 125, 15, 161, 163, 166, 157, 182 | dvmptres3 23938 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
184 | 15, 151, 158, 183, 1, 126, 125, 132 | dvmptres 23945 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
185 | 15, 135, 140, 148, 149, 150, 184 | dvmptsub 23949 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
186 | 185 | dmeqd 5481 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
187 | | ovex 6842 |
. . . . . 6
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) ∈ V |
188 | | eqid 2760 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
189 | 187, 188 | dmmpti 6184 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = 𝐴 |
190 | 186, 189 | syl6eq 2810 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴) |
191 | 134, 190 | syl5sseqr 3795 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))) |
192 | | simpr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
193 | 49 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℝ) |
194 | 193 | recnd 10280 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℂ) |
195 | 192, 194 | subcld 10604 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦 − 𝐵) ∈ ℂ) |
196 | 85 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈
ℕ0) |
197 | 87 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℕ0) |
198 | 196, 197 | nn0addcld 11567 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
199 | 195, 198 | expcld 13222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
200 | 152, 199 | sylan2 492 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
201 | 98 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈ ℂ) |
202 | | 1cnd 10268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
203 | 201, 202 | addcld 10271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ) |
204 | 195, 196 | expcld 13222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
205 | 203, 204 | mulcld 10272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
206 | 152, 205 | sylan2 492 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
207 | 16 | prid2 4442 |
. . . . . . . . . . 11
⊢ ℂ
∈ {ℝ, ℂ} |
208 | 207 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
209 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
210 | | elfznn 12583 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ) |
211 | 6, 210 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
212 | 211 | nnnn0d 11563 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
213 | 212 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
214 | 209, 213 | expcld 13222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ) |
215 | | ovexd 6844 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥↑𝑀)) ∈ V) |
216 | 208 | dvmptid 23939 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
217 | | 0cnd 10245 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 0 ∈
ℂ) |
218 | 49 | recnd 10280 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
219 | 208, 218 | dvmptc 23940 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0)) |
220 | 208, 192,
202, 216, 194, 217, 219 | dvmptsub 23949 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ (1 −
0))) |
221 | | 1m0e1 11343 |
. . . . . . . . . . . 12
⊢ (1
− 0) = 1 |
222 | 221 | mpteq2i 4893 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ (1
− 0)) = (𝑦 ∈
ℂ ↦ 1) |
223 | 220, 222 | syl6eq 2810 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ 1)) |
224 | | dvexp 23935 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) ∈ ℕ →
(ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
225 | 211, 224 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
226 | 98, 99 | pncand 10605 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
227 | 226 | oveq2d 6830 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥↑𝑀)) |
228 | 227 | oveq2d 6830 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥↑𝑀))) |
229 | 228 | mpteq2dv 4897 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
230 | 225, 229 | eqtrd 2794 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
231 | | oveq1 6821 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
232 | | oveq1 6821 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑𝑀) = ((𝑦 − 𝐵)↑𝑀)) |
233 | 232 | oveq2d 6830 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → ((𝑀 + 1) · (𝑥↑𝑀)) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
234 | 208, 208,
195, 202, 214, 215, 223, 230, 231, 233 | dvmptco 23954 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1))) |
235 | 205 | mulid1d 10269 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
236 | 235 | mpteq2dva 4896 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
237 | 234, 236 | eqtrd 2794 |
. . . . . . . 8
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
238 | 125, 15, 161, 163, 199, 205, 237 | dvmptres3 23938 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
239 | 15, 200, 206, 238, 1, 126, 125, 132 | dvmptres 23945 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
240 | 239 | dmeqd 5481 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = dom (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
241 | | ovex 6842 |
. . . . . 6
⊢ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ V |
242 | | eqid 2760 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
243 | 241, 242 | dmmpti 6184 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = 𝐴 |
244 | 240, 243 | syl6eq 2810 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) |
245 | 134, 244 | syl5sseqr 3795 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))) |
246 | 15, 22, 1, 9, 47, 48 | dvntaylp0 24345 |
. . . . . 6
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
247 | 246 | oveq2d 6830 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
248 | 124, 46 | ffvelrnd 6524 |
. . . . . 6
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ) |
249 | 248 | subidd 10592 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
250 | 247, 249 | eqtrd 2794 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
251 | 125 | subcn 22890 |
. . . . . . 7
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
252 | 251 | a1i 11 |
. . . . . 6
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
253 | | dvcn 23903 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
254 | 102, 124,
1, 122, 253 | syl31anc 1480 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
255 | 146, 254 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
256 | | plycn 24236 |
. . . . . . . 8
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
257 | 70, 256 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
258 | 1, 20 | syl6ss 3756 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
259 | | cncfmptid 22936 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑦
∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
260 | 258, 168,
259 | sylancl 697 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
261 | 257, 260 | cncfmpt1f 22937 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
262 | 125, 252,
255, 261 | cncfmpt2f 22938 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴–cn→ℂ)) |
263 | | fveq2 6353 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
264 | | fveq2 6353 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
265 | 263, 264 | oveq12d 6832 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
266 | 262, 46, 265 | cnmptlimc 23873 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
267 | 250, 266 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
268 | 218 | subidd 10592 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
269 | 268 | oveq1d 6829 |
. . . . 5
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1))) |
270 | 211 | 0expd 13238 |
. . . . 5
⊢ (𝜑 → (0↑(𝑀 + 1)) = 0) |
271 | 269, 270 | eqtrd 2794 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = 0) |
272 | 258 | sselda 3744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
273 | 272, 199 | syldan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
274 | 273, 91 | fmptd 6549 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ) |
275 | | dvcn 23903 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
276 | 102, 274,
1, 244, 275 | syl31anc 1480 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
277 | | oveq1 6821 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 − 𝐵) = (𝐵 − 𝐵)) |
278 | 277 | oveq1d 6829 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝐵 − 𝐵)↑(𝑀 + 1))) |
279 | 276, 46, 278 | cnmptlimc 23873 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
280 | 271, 279 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
281 | 258 | ssdifssd 3891 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
282 | 281 | sselda 3744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ) |
283 | 218 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
284 | 282, 283 | subcld 10604 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ∈ ℂ) |
285 | | eldifsni 4466 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦 ≠ 𝐵) |
286 | 285 | adantl 473 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ≠ 𝐵) |
287 | 282, 283,
286 | subne0d 10613 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ≠ 0) |
288 | 211 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
289 | 288 | nnzd 11693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ) |
290 | 284, 287,
289 | expne0d 13228 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ≠ 0) |
291 | 290 | necomd 2987 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
292 | 291 | neneqd 2937 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
293 | 292 | nrexdv 3139 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
294 | | df-ima 5279 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) |
295 | 294 | eleq2i 2831 |
. . . . 5
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))) |
296 | | resmpt 5607 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) |
297 | 134, 296 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
298 | | ovex 6842 |
. . . . . 6
⊢ ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ V |
299 | 297, 298 | elrnmpti 5531 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
300 | 295, 299 | bitri 264 |
. . . 4
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
301 | 293, 300 | sylnibr 318 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵}))) |
302 | 98 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ) |
303 | | 1cnd 10268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈
ℂ) |
304 | 302, 303 | addcld 10271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
305 | 282, 204 | syldan 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
306 | 288 | nnne0d 11277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
307 | 84 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ) |
308 | 307 | nnzd 11693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
309 | 284, 287,
308 | expne0d 13228 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ≠ 0) |
310 | 304, 305,
306, 309 | mulne0d 10891 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ≠ 0) |
311 | 310 | necomd 2987 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
312 | 311 | neneqd 2937 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
313 | 312 | nrexdv 3139 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
314 | 239 | imaeq1d 5623 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵}))) |
315 | | df-ima 5279 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) |
316 | 314, 315 | syl6eq 2810 |
. . . . . 6
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))) |
317 | 316 | eleq2d 2825 |
. . . . 5
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))) |
318 | | resmpt 5607 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
319 | 134, 318 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
320 | 319, 241 | elrnmpti 5531 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
321 | 317, 320 | syl6bb 276 |
. . . 4
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
322 | 313, 321 | mtbird 314 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵}))) |
323 | | eldifi 3875 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ 𝐴) |
324 | 139 | ffvelrnda 6523 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
325 | 323, 324 | sylan2 492 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
326 | 1 | ssdifssd 3891 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ) |
327 | 326 | sselda 3744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ) |
328 | 327 | recnd 10280 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ) |
329 | 156 | ffvelrnda 6523 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
330 | 328, 329 | syldan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
331 | 325, 330 | subcld 10604 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ ℂ) |
332 | 49 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ) |
333 | 327, 332 | resubcld 10670 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℝ) |
334 | 85 | adantr 472 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈
ℕ0) |
335 | 333, 334 | reexpcld 13239 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℝ) |
336 | 335 | recnd 10280 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℂ) |
337 | 332 | recnd 10280 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
338 | 328, 337 | subcld 10604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℂ) |
339 | | eldifsni 4466 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ≠ 𝐵) |
340 | 339 | adantl 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ≠ 𝐵) |
341 | 328, 337,
340 | subne0d 10613 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ≠ 0) |
342 | 334 | nn0zd 11692 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
343 | 338, 341,
342 | expne0d 13228 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ≠ 0) |
344 | 331, 336,
343 | divcld 11013 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) ∈ ℂ) |
345 | 211 | nnrecred 11278 |
. . . . . . 7
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ) |
346 | 345 | recnd 10280 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ) |
347 | 346 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ) |
348 | | txtopon 21616 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
→ ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ))) |
349 | 159, 159,
348 | mp2an 710 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) |
350 | 349 | toponunii 20943 |
. . . . . . . 8
⊢ (ℂ
× ℂ) = ∪
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
351 | 350 | restid 16316 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) → (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) = ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld))) |
352 | 349, 351 | ax-mp 5 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) = ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
353 | 352 | eqcomi 2769 |
. . . . 5
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) |
354 | | taylthlem2.i |
. . . . 5
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) |
355 | | limcresi 23868 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) |
356 | | resmpt 5607 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))) |
357 | 134, 356 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) |
358 | 357 | oveq1i 6824 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
359 | 355, 358 | sseqtri 3778 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
360 | | cncfmptc 22935 |
. . . . . . . 8
⊢ (((1 /
(𝑀 + 1)) ∈ ℝ
∧ 𝐴 ⊆ ℂ
∧ ℝ ⊆ ℂ) → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
361 | 345, 258,
102, 360 | syl3anc 1477 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
362 | | eqidd 2761 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1))) |
363 | 361, 46, 362 | cnmptlimc 23873 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
364 | 359, 363 | sseldi 3742 |
. . . . 5
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
365 | 125 | mulcn 22891 |
. . . . . 6
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
366 | | 0cn 10244 |
. . . . . . 7
⊢ 0 ∈
ℂ |
367 | | opelxpi 5305 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → 〈0, (1 /
(𝑀 + 1))〉 ∈
(ℂ × ℂ)) |
368 | 366, 346,
367 | sylancr 698 |
. . . . . 6
⊢ (𝜑 → 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ
× ℂ)) |
369 | 350 | cncnpi 21304 |
. . . . . 6
⊢ ((
· ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) ∧ 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ ×
ℂ)) → · ∈ ((((TopOpen‘ℂfld)
×t (TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
370 | 365, 368,
369 | sylancr 698 |
. . . . 5
⊢ (𝜑 → · ∈
((((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
371 | 344, 347,
169, 169, 125, 353, 354, 364, 370 | limccnp2 23875 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵)) |
372 | 346 | mul02d 10446 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) = 0) |
373 | 185 | fveq1d 6355 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥)) |
374 | | fveq2 6353 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥)) |
375 | | fveq2 6353 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) |
376 | 374, 375 | oveq12d 6832 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
377 | | ovex 6842 |
. . . . . . . . . . 11
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ V |
378 | 376, 188,
377 | fvmpt 6445 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
379 | 323, 378 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
380 | 373, 379 | sylan9eq 2814 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
381 | 239 | fveq1d 6355 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥)) |
382 | | oveq1 6821 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) |
383 | 382 | oveq1d 6829 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑀) = ((𝑥 − 𝐵)↑𝑀)) |
384 | 383 | oveq2d 6830 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
385 | | ovex 6842 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) ∈ V |
386 | 384, 242,
385 | fvmpt 6445 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
387 | 323, 386 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
388 | 381, 387 | sylan9eq 2814 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
389 | 211 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
390 | 389 | nncnd 11248 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
391 | 390, 336 | mulcomd 10273 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
392 | 388, 391 | eqtrd 2794 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
393 | 380, 392 | oveq12d 6832 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
394 | 389 | nnne0d 11277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
395 | 331, 336,
390, 343, 394 | divdiv1d 11044 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
396 | 344, 390,
394 | divrecd 11016 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) |
397 | 393, 395,
396 | 3eqtr2rd 2801 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) |
398 | 397 | mpteq2dva 4896 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)))) |
399 | 398 | oveq1d 6829 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
400 | 371, 372,
399 | 3eltr3d 2853 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
401 | 1, 78, 92, 132, 46, 133, 191, 245, 267, 280, 301, 322, 400 | lhop 23998 |
. 2
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵)) |
402 | 323 | adantl 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ 𝐴) |
403 | | fveq2 6353 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
404 | | fveq2 6353 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
405 | 403, 404 | oveq12d 6832 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
406 | | ovex 6842 |
. . . . . . 7
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V |
407 | 405, 77, 406 | fvmpt 6445 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
408 | 402, 407 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
409 | 382 | oveq1d 6829 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
410 | | ovex 6842 |
. . . . . . 7
⊢ ((𝑥 − 𝐵)↑(𝑀 + 1)) ∈ V |
411 | 409, 91, 410 | fvmpt 6445 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
412 | 402, 411 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
413 | 408, 412 | oveq12d 6832 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) |
414 | 413 | mpteq2dva 4896 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1))))) |
415 | 414 | oveq1d 6829 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |
416 | 401, 415 | eleqtrd 2841 |
1
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |