MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem1 Structured version   Visualization version   GIF version

Theorem taylthlem1 24172
Description: Lemma for taylth 24174. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that 𝑆 = ℝ, we can only do this part generically, and for taylth 24174 itself we must restrict to . (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylthlem1.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylthlem1.f (𝜑𝐹:𝐴⟶ℂ)
taylthlem1.a (𝜑𝐴𝑆)
taylthlem1.d (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴)
taylthlem1.n (𝜑𝑁 ∈ ℕ)
taylthlem1.b (𝜑𝐵𝐴)
taylthlem1.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylthlem1.r 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
taylthlem1.i ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
Assertion
Ref Expression
taylthlem1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝐵,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑛,𝑁,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦   𝑇,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑛)

Proof of Theorem taylthlem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 taylthlem1.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 elfz1end 12409 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
31, 2sylib 208 . . 3 (𝜑𝑁 ∈ (1...𝑁))
4 oveq2 6698 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑁𝑚) = (𝑁 − 1))
54fveq2d 6233 . . . . . . . . . . 11 (𝑚 = 1 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
65fveq1d 6231 . . . . . . . . . 10 (𝑚 = 1 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥))
74fveq2d 6233 . . . . . . . . . . 11 (𝑚 = 1 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁 − 1)))
87fveq1d 6231 . . . . . . . . . 10 (𝑚 = 1 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥))
96, 8oveq12d 6708 . . . . . . . . 9 (𝑚 = 1 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
10 oveq2 6698 . . . . . . . . 9 (𝑚 = 1 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑1))
119, 10oveq12d 6708 . . . . . . . 8 (𝑚 = 1 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1)))
1211mpteq2dv 4778 . . . . . . 7 (𝑚 = 1 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))))
1312oveq1d 6705 . . . . . 6 (𝑚 = 1 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))
1413eleq2d 2716 . . . . 5 (𝑚 = 1 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵)))
1514imbi2d 329 . . . 4 (𝑚 = 1 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))))
16 oveq2 6698 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑁𝑚) = (𝑁𝑛))
1716fveq2d 6233 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁𝑛)))
1817fveq1d 6231 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥))
1916fveq2d 6233 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑛)))
2019fveq1d 6231 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥))
2118, 20oveq12d 6708 . . . . . . . . . 10 (𝑚 = 𝑛 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)))
22 oveq2 6698 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑𝑛))
2321, 22oveq12d 6708 . . . . . . . . 9 (𝑚 = 𝑛 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛)))
2423mpteq2dv 4778 . . . . . . . 8 (𝑚 = 𝑛 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛))))
25 fveq2 6229 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦))
26 fveq2 6229 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦))
2725, 26oveq12d 6708 . . . . . . . . . 10 (𝑥 = 𝑦 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)))
28 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐵) = (𝑦𝐵))
2928oveq1d 6705 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐵)↑𝑛) = ((𝑦𝐵)↑𝑛))
3027, 29oveq12d 6708 . . . . . . . . 9 (𝑥 = 𝑦 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛)))
3130cbvmptv 4783 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛))) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛)))
3224, 31syl6eq 2701 . . . . . . 7 (𝑚 = 𝑛 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))))
3332oveq1d 6705 . . . . . 6 (𝑚 = 𝑛 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))
3433eleq2d 2716 . . . . 5 (𝑚 = 𝑛 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵)))
3534imbi2d 329 . . . 4 (𝑚 = 𝑛 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))))
36 oveq2 6698 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑁𝑚) = (𝑁 − (𝑛 + 1)))
3736fveq2d 6233 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1))))
3837fveq1d 6231 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥))
3936fveq2d 6233 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1))))
4039fveq1d 6231 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥))
4138, 40oveq12d 6708 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)))
42 oveq2 6698 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑(𝑛 + 1)))
4341, 42oveq12d 6708 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1))))
4443mpteq2dv 4778 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))))
4544oveq1d 6705 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
4645eleq2d 2716 . . . . 5 (𝑚 = (𝑛 + 1) → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵)))
4746imbi2d 329 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
48 oveq2 6698 . . . . . . . . . . . 12 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
4948fveq2d 6233 . . . . . . . . . . 11 (𝑚 = 𝑁 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)))
5049fveq1d 6231 . . . . . . . . . 10 (𝑚 = 𝑁 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥))
5148fveq2d 6233 . . . . . . . . . . 11 (𝑚 = 𝑁 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑁)))
5251fveq1d 6231 . . . . . . . . . 10 (𝑚 = 𝑁 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥))
5350, 52oveq12d 6708 . . . . . . . . 9 (𝑚 = 𝑁 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)))
54 oveq2 6698 . . . . . . . . 9 (𝑚 = 𝑁 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑𝑁))
5553, 54oveq12d 6708 . . . . . . . 8 (𝑚 = 𝑁 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁)))
5655mpteq2dv 4778 . . . . . . 7 (𝑚 = 𝑁 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))))
5756oveq1d 6705 . . . . . 6 (𝑚 = 𝑁 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))
5857eleq2d 2716 . . . . 5 (𝑚 = 𝑁 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵)))
5958imbi2d 329 . . . 4 (𝑚 = 𝑁 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))))
60 taylthlem1.b . . . . . . . . . . . 12 (𝜑𝐵𝐴)
61 fveq2 6229 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) = (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵))
62 fveq2 6229 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) = (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵))
6361, 62oveq12d 6708 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
64 eqid 2651 . . . . . . . . . . . . 13 (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
65 ovex 6718 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)) ∈ V
6663, 64, 65fvmpt 6321 . . . . . . . . . . . 12 (𝐵𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
6760, 66syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
68 taylthlem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ {ℝ, ℂ})
69 taylthlem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
70 taylthlem1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑆)
711nnnn0d 11389 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
72 nn0uz 11760 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
7371, 72syl6eleq 2740 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘0))
74 eluzfz2b 12388 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
7573, 74sylib 208 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (0...𝑁))
76 taylthlem1.d . . . . . . . . . . . . . 14 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴)
7760, 76eleqtrrd 2733 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
78 taylthlem1.t . . . . . . . . . . . . 13 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
7968, 69, 70, 75, 77, 78dvntaylp0 24171 . . . . . . . . . . . 12 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵))
8079oveq2d 6706 . . . . . . . . . . 11 (𝜑 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵)))
81 cnex 10055 . . . . . . . . . . . . . . . 16 ℂ ∈ V
8281a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ∈ V)
83 elpm2r 7917 . . . . . . . . . . . . . . 15 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
8482, 68, 69, 70, 83syl22anc 1367 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
85 dvnf 23735 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)
8668, 84, 71, 85syl3anc 1366 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)
8786, 77ffvelrnd 6400 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) ∈ ℂ)
8887subidd 10418 . . . . . . . . . . 11 (𝜑 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵)) = 0)
8967, 80, 883eqtrd 2689 . . . . . . . . . 10 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0)
90 funmpt 5964 . . . . . . . . . . 11 Fun (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
91 ovex 6718 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)) ∈ V
9291, 64dmmpti 6061 . . . . . . . . . . . 12 dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) = 𝐴
9360, 92syl6eleqr 2741 . . . . . . . . . . 11 (𝜑𝐵 ∈ dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))))
94 funbrfvb 6276 . . . . . . . . . . 11 ((Fun (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) ∧ 𝐵 ∈ dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))) → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
9590, 93, 94sylancr 696 . . . . . . . . . 10 (𝜑 → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
9689, 95mpbid 222 . . . . . . . . 9 (𝜑𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0)
97 nnm1nn0 11372 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
981, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ ℕ0)
99 dvnf 23735 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ)
10068, 84, 98, 99syl3anc 1366 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ)
101 dvnbss 23736 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ dom 𝐹)
10268, 84, 98, 101syl3anc 1366 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ dom 𝐹)
103 fdm 6089 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
10469, 103syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 = 𝐴)
105102, 104sseqtrd 3674 . . . . . . . . . . . . . . 15 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ 𝐴)
106 fzo0end 12600 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
107 elfzofz 12524 . . . . . . . . . . . . . . . . . 18 ((𝑁 − 1) ∈ (0..^𝑁) → (𝑁 − 1) ∈ (0...𝑁))
1081, 106, 1073syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ (0...𝑁))
109 dvn2bss 23738 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
11068, 84, 108, 109syl3anc 1366 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
11176, 110eqsstr3d 3673 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
112105, 111eqssd 3653 . . . . . . . . . . . . . 14 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) = 𝐴)
113112feq2d 6069 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ))
114100, 113mpbid 222 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ)
115114ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
11676feq2d 6069 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ))
11786, 116mpbid 222 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ)
118117ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) ∈ ℂ)
1191nncnd 11074 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
120 1cnd 10094 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
121119, 120npcand 10434 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
122121fveq2d 6233 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = ((𝑆 D𝑛 𝐹)‘𝑁))
123 recnprss 23713 . . . . . . . . . . . . . . 15 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
12468, 123syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
125 dvnp1 23733 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
126124, 84, 98, 125syl3anc 1366 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
127122, 126eqtr3d 2687 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
128117feqmptd 6288 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦)))
129114feqmptd 6288 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦)))
130129oveq2d 6706 . . . . . . . . . . . 12 (𝜑 → (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = (𝑆 D (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦))))
131127, 128, 1303eqtr3rd 2694 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦)))
13270, 124sstrd 3646 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
133132sselda 3636 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
134 1nn0 11346 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
135134a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
136 elpm2r 7917 . . . . . . . . . . . . . . . . . . . 20 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ ∧ 𝐴𝑆)) → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆))
13782, 68, 114, 70, 136syl22anc 1367 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆))
138 dvn1 23734 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
139124, 137, 138syl2anc 694 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
140126, 122eqtr3d 2687 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑁))
141139, 140eqtrd 2685 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = ((𝑆 D𝑛 𝐹)‘𝑁))
142141dmeqd 5358 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
14377, 142eleqtrrd 2733 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1))
144 eqid 2651 . . . . . . . . . . . . . . 15 (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵)
14568, 114, 70, 135, 143, 144taylpf 24165 . . . . . . . . . . . . . 14 (𝜑 → (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵):ℂ⟶ℂ)
146120, 119pncan3d 10433 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
147146oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
148147, 78syl6reqr 2704 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 = ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))
149148oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D𝑛 𝑇) = (ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵)))
150149fveq1d 6231 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = ((ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))‘(𝑁 − 1)))
151146fveq2d 6233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑁))
152151dmeqd 5358 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
15377, 152eleqtrrd 2733 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))))
15468, 69, 70, 98, 135, 153dvntaylp 24170 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))‘(𝑁 − 1)) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵))
155150, 154eqtrd 2685 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵))
156155feq1d 6068 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1)):ℂ⟶ℂ ↔ (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵):ℂ⟶ℂ))
157145, 156mpbird 247 . . . . . . . . . . . . 13 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)):ℂ⟶ℂ)
158157ffvelrnda 6399 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
159133, 158syldan 486 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
160 0nn0 11345 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
161160a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℕ0)
162 elpm2r 7917 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ ∧ 𝐴𝑆)) → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆))
16382, 68, 117, 70, 162syl22anc 1367 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆))
164 dvn0 23732 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = ((𝑆 D𝑛 𝐹)‘𝑁))
165124, 163, 164syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = ((𝑆 D𝑛 𝐹)‘𝑁))
166165dmeqd 5358 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
16777, 166eleqtrrd 2733 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0))
168 eqid 2651 . . . . . . . . . . . . . . 15 (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵)
16968, 117, 70, 161, 167, 168taylpf 24165 . . . . . . . . . . . . . 14 (𝜑 → (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵):ℂ⟶ℂ)
170119addid2d 10275 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 + 𝑁) = 𝑁)
171170oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
172171, 78syl6eqr 2703 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵) = 𝑇)
173172oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇))
174173fveq1d 6231 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵))‘𝑁) = ((ℂ D𝑛 𝑇)‘𝑁))
175170fveq2d 6233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)) = ((𝑆 D𝑛 𝐹)‘𝑁))
176175dmeqd 5358 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
17777, 176eleqtrrd 2733 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)))
17868, 69, 70, 71, 161, 177dvntaylp 24170 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵))‘𝑁) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵))
179174, 178eqtr3d 2687 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵))
180179feq1d 6068 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑁):ℂ⟶ℂ ↔ (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵):ℂ⟶ℂ))
181169, 180mpbird 247 . . . . . . . . . . . . 13 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁):ℂ⟶ℂ)
182181ffvelrnda 6399 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
183133, 182syldan 486 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
184124sselda 3636 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
185184, 158syldan 486 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
186184, 182syldan 486 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
187 eqid 2651 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
188187cnfldtopon 22633 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
189 toponmax 20778 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
190188, 189mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
191 df-ss 3621 . . . . . . . . . . . . . 14 (𝑆 ⊆ ℂ ↔ (𝑆 ∩ ℂ) = 𝑆)
192124, 191sylib 208 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∩ ℂ) = 𝑆)
193 ssid 3657 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
194193a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℂ ⊆ ℂ)
195 mapsspm 7933 . . . . . . . . . . . . . . . . 17 (ℂ ↑𝑚 ℂ) ⊆ (ℂ ↑pm ℂ)
19668, 69, 70, 71, 77, 78taylpf 24165 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:ℂ⟶ℂ)
19781, 81elmap 7928 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ (ℂ ↑𝑚 ℂ) ↔ 𝑇:ℂ⟶ℂ)
198196, 197sylibr 224 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ (ℂ ↑𝑚 ℂ))
199195, 198sseldi 3634 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ (ℂ ↑pm ℂ))
200 dvnp1 23733 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))))
201194, 199, 98, 200syl3anc 1366 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))))
202121fveq2d 6233 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = ((ℂ D𝑛 𝑇)‘𝑁))
203201, 202eqtr3d 2687 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))) = ((ℂ D𝑛 𝑇)‘𝑁))
204157feqmptd 6288 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))
205204oveq2d 6706 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))
206181feqmptd 6288 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
207203, 205, 2063eqtr3d 2693 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
208187, 68, 190, 192, 158, 182, 207dvmptres3 23764 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝑆 ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
209 eqid 2651 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
210 resttopon 21013 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
211188, 124, 210sylancr 696 . . . . . . . . . . . . . . 15 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
212 topontop 20766 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
213211, 212syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
214 toponuni 20767 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
215211, 214syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
21670, 215sseqtrd 3674 . . . . . . . . . . . . . 14 (𝜑𝐴 ((TopOpen‘ℂfld) ↾t 𝑆))
217 eqid 2651 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
218217ntrss2 20909 . . . . . . . . . . . . . 14 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝐴 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
219213, 216, 218syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
220140dmeqd 5358 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
221220, 76eqtrd 2685 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = 𝐴)
222124, 114, 70, 209, 187dvbssntr 23709 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
223221, 222eqsstr3d 3673 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
224219, 223eqssd 3653 . . . . . . . . . . . 12 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) = 𝐴)
22568, 185, 186, 208, 70, 209, 187, 224dvmptres2 23770 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
22668, 115, 118, 131, 159, 183, 225dvmptsub 23775 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))))
227226breqd 4696 . . . . . . . . 9 (𝜑 → (𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
22896, 227mpbird 247 . . . . . . . 8 (𝜑𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0)
229 eqid 2651 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵)))
230115, 159subcld 10430 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) ∈ ℂ)
231 eqid 2651 . . . . . . . . . 10 (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))
232230, 231fmptd 6425 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))):𝐴⟶ℂ)
233209, 187, 229, 124, 232, 70eldv 23707 . . . . . . . 8 (𝜑 → (𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0 ↔ (𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ∧ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))))
234228, 233mpbid 222 . . . . . . 7 (𝜑 → (𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ∧ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵)))
235234simprd 478 . . . . . 6 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))
236 eldifi 3765 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐴)
237 fveq2 6229 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥))
238 fveq2 6229 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥))
239237, 238oveq12d 6708 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
240 ovex 6718 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) ∈ V
241239, 231, 240fvmpt 6321 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
242 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵))
243 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵))
244242, 243oveq12d 6708 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
245 ovex 6718 . . . . . . . . . . . . . . 15 ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)) ∈ V
246244, 231, 245fvmpt 6321 . . . . . . . . . . . . . 14 (𝐵𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
24760, 246syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
24868, 69, 70, 108, 77, 78dvntaylp0 24171 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵))
249248oveq2d 6706 . . . . . . . . . . . . 13 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵)))
250114, 60ffvelrnd 6400 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) ∈ ℂ)
251250subidd 10418 . . . . . . . . . . . . 13 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵)) = 0)
252247, 249, 2513eqtrd 2689 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = 0)
253241, 252oveqan12rd 6710 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) − 0))
254114ffvelrnda 6399 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
255132sselda 3636 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
256157ffvelrnda 6399 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
257255, 256syldan 486 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
258254, 257subcld 10430 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) ∈ ℂ)
259258subid1d 10419 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) − 0) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
260253, 259eqtr2d 2686 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) = (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)))
261236, 260sylan2 490 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) = (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)))
262132ssdifssd 3781 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
263262sselda 3636 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ)
264132, 60sseldd 3637 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
265264adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
266263, 265subcld 10430 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℂ)
267266exp1d 13043 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑1) = (𝑥𝐵))
268261, 267oveq12d 6708 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1)) = ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵)))
269268mpteq2dva 4777 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))))
270269oveq1d 6705 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))
271235, 270eleqtrrd 2733 . . . . 5 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))
272271a1i 11 . . . 4 (𝑁 ∈ (ℤ‘1) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵)))
273 taylthlem1.i . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
274273expr 642 . . . . . 6 ((𝜑𝑛 ∈ (1..^𝑁)) → (0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵)))
275274expcom 450 . . . . 5 (𝑛 ∈ (1..^𝑁) → (𝜑 → (0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
276275a2d 29 . . . 4 (𝑛 ∈ (1..^𝑁) → ((𝜑 → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵)) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
27715, 35, 47, 59, 272, 276fzind2 12626 . . 3 (𝑁 ∈ (1...𝑁) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵)))
2783, 277mpcom 38 . 2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))
279119subidd 10418 . . . . . . . . . 10 (𝜑 → (𝑁𝑁) = 0)
280279fveq2d 6233 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)) = ((𝑆 D𝑛 𝐹)‘0))
281 dvn0 23732 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
282124, 84, 281syl2anc 694 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
283280, 282eqtrd 2685 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)) = 𝐹)
284283fveq1d 6231 . . . . . . 7 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) = (𝐹𝑥))
285279fveq2d 6233 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑁)) = ((ℂ D𝑛 𝑇)‘0))
286 dvn0 23732 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝑇)‘0) = 𝑇)
287193, 199, 286sylancr 696 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘0) = 𝑇)
288285, 287eqtrd 2685 . . . . . . . 8 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑁)) = 𝑇)
289288fveq1d 6231 . . . . . . 7 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥) = (𝑇𝑥))
290284, 289oveq12d 6708 . . . . . 6 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) = ((𝐹𝑥) − (𝑇𝑥)))
291290oveq1d 6705 . . . . 5 (𝜑 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁)) = (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
292291mpteq2dv 4778 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁))))
293 taylthlem1.r . . . 4 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
294292, 293syl6eqr 2703 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) = 𝑅)
295294oveq1d 6705 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵) = (𝑅 lim 𝐵))
296278, 295eleqtrd 2732 1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  cin 3606  wss 3607  {csn 4210  {cpr 4212   cuni 4468   class class class wbr 4685  cmpt 4762  dom cdm 5143  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  pm cpm 7900  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  cmin 10304   / cdiv 10722  cn 11058  0cn0 11330  cuz 11725  ...cfz 12364  ..^cfzo 12504  cexp 12900  t crest 16128  TopOpenctopn 16129  fldccnfld 19794  Topctop 20746  TopOnctopon 20763  intcnt 20869   lim climc 23671   D cdv 23672   D𝑛 cdvn 23673   Tayl ctayl 24152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-dvn 23677  df-tayl 24154
This theorem is referenced by:  taylth  24174
  Copyright terms: Public domain W3C validator