MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply2 Structured version   Visualization version   GIF version

Theorem taylply2 24342
Description: The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 24343 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylply2.1 (𝜑𝐷 ∈ (SubRing‘ℂfld))
taylply2.2 (𝜑𝐵𝐷)
taylply2.3 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
Assertion
Ref Expression
taylply2 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐷,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylply2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . . . 5 (𝜑𝐴𝑆)
4 taylpfval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . . . . 5 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylpfval 24339 . . . 4 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
8 simpr 479 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9 cnex 10230 . . . . . . . . . . . . 13 ℂ ∈ V
109a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
11 elpm2r 8044 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1210, 1, 2, 3, 11syl22anc 1478 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
13 dvnbss 23911 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
141, 12, 4, 13syl3anc 1477 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
15 fdm 6213 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
162, 15syl 17 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
1714, 16sseqtrd 3783 . . . . . . . . 9 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴)
18 recnprss 23888 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
191, 18syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
203, 19sstrd 3755 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
2117, 20sstrd 3755 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ)
2221, 5sseldd 3746 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2322adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
248, 23subcld 10605 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
25 df-idp 24165 . . . . . . . 8 Xp = ( I ↾ ℂ)
26 mptresid 5615 . . . . . . . 8 (𝑥 ∈ ℂ ↦ 𝑥) = ( I ↾ ℂ)
2725, 26eqtr4i 2786 . . . . . . 7 Xp = (𝑥 ∈ ℂ ↦ 𝑥)
2827a1i 11 . . . . . 6 (𝜑Xp = (𝑥 ∈ ℂ ↦ 𝑥))
29 fconstmpt 5321 . . . . . . 7 (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵)
3029a1i 11 . . . . . 6 (𝜑 → (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵))
3110, 8, 23, 28, 30offval2 7081 . . . . 5 (𝜑 → (Xp𝑓 − (ℂ × {𝐵})) = (𝑥 ∈ ℂ ↦ (𝑥𝐵)))
32 eqidd 2762 . . . . 5 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
33 oveq1 6822 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
3433oveq2d 6831 . . . . . 6 (𝑦 = (𝑥𝐵) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3534sumeq2sdv 14655 . . . . 5 (𝑦 = (𝑥𝐵) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3624, 31, 32, 35fmptco 6561 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵}))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
377, 36eqtr4d 2798 . . 3 (𝜑𝑇 = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵}))))
38 taylply2.1 . . . . . 6 (𝜑𝐷 ∈ (SubRing‘ℂfld))
39 cnfldbas 19973 . . . . . . 7 ℂ = (Base‘ℂfld)
4039subrgss 19004 . . . . . 6 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ⊆ ℂ)
4138, 40syl 17 . . . . 5 (𝜑𝐷 ⊆ ℂ)
42 taylply2.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
4341, 4, 42elplyd 24178 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷))
44 cnfld1 19994 . . . . . . . 8 1 = (1r‘ℂfld)
4544subrg1cl 19011 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐷)
4638, 45syl 17 . . . . . 6 (𝜑 → 1 ∈ 𝐷)
47 plyid 24185 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 1 ∈ 𝐷) → Xp ∈ (Poly‘𝐷))
4841, 46, 47syl2anc 696 . . . . 5 (𝜑Xp ∈ (Poly‘𝐷))
49 taylply2.2 . . . . . 6 (𝜑𝐵𝐷)
50 plyconst 24182 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 𝐵𝐷) → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
5141, 49, 50syl2anc 696 . . . . 5 (𝜑 → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
52 subrgsubg 19009 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ∈ (SubGrp‘ℂfld))
5338, 52syl 17 . . . . . 6 (𝜑𝐷 ∈ (SubGrp‘ℂfld))
54 cnfldadd 19974 . . . . . . . 8 + = (+g‘ℂfld)
5554subgcl 17826 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 + 𝑣) ∈ 𝐷)
56553expb 1114 . . . . . 6 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
5753, 56sylan 489 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
58 cnfldmul 19975 . . . . . . . 8 · = (.r‘ℂfld)
5958subrgmcl 19015 . . . . . . 7 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 · 𝑣) ∈ 𝐷)
60593expb 1114 . . . . . 6 ((𝐷 ∈ (SubRing‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
6138, 60sylan 489 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
62 ax-1cn 10207 . . . . . . 7 1 ∈ ℂ
63 cnfldneg 19995 . . . . . . 7 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
6462, 63ax-mp 5 . . . . . 6 ((invg‘ℂfld)‘1) = -1
65 eqid 2761 . . . . . . . 8 (invg‘ℂfld) = (invg‘ℂfld)
6665subginvcl 17825 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐷) → ((invg‘ℂfld)‘1) ∈ 𝐷)
6753, 46, 66syl2anc 696 . . . . . 6 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐷)
6864, 67syl5eqelr 2845 . . . . 5 (𝜑 → -1 ∈ 𝐷)
6948, 51, 57, 61, 68plysub 24195 . . . 4 (𝜑 → (Xp𝑓 − (ℂ × {𝐵})) ∈ (Poly‘𝐷))
7043, 69, 57, 61plyco 24217 . . 3 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵}))) ∈ (Poly‘𝐷))
7137, 70eqeltrd 2840 . 2 (𝜑𝑇 ∈ (Poly‘𝐷))
7237fveq2d 6358 . . . 4 (𝜑 → (deg‘𝑇) = (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵})))))
73 eqid 2761 . . . . 5 (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
74 eqid 2761 . . . . 5 (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = (deg‘(Xp𝑓 − (ℂ × {𝐵})))
7573, 74, 43, 69dgrco 24251 . . . 4 (𝜑 → (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xp𝑓 − (ℂ × {𝐵})))))
76 eqid 2761 . . . . . . . . 9 (Xp𝑓 − (ℂ × {𝐵})) = (Xp𝑓 − (ℂ × {𝐵}))
7776plyremlem 24279 . . . . . . . 8 (𝐵 ∈ ℂ → ((Xp𝑓 − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7822, 77syl 17 . . . . . . 7 (𝜑 → ((Xp𝑓 − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7978simp2d 1138 . . . . . 6 (𝜑 → (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = 1)
8079oveq2d 6831 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xp𝑓 − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1))
81 dgrcl 24209 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷) → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8243, 81syl 17 . . . . . . 7 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8382nn0cnd 11566 . . . . . 6 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℂ)
8483mulid1d 10270 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8580, 84eqtrd 2795 . . . 4 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xp𝑓 − (ℂ × {𝐵})))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8672, 75, 853eqtrd 2799 . . 3 (𝜑 → (deg‘𝑇) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
871adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
8812adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
89 elfznn0 12647 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9089adantl 473 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
91 dvnf 23910 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
9287, 88, 90, 91syl3anc 1477 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
93 simpr 479 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
94 dvn2bss 23913 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9587, 88, 93, 94syl3anc 1477 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
965adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
9795, 96sseldd 3746 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9892, 97ffvelrnd 6525 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
99 faccl 13285 . . . . . . 7 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
10090, 99syl 17 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
101100nncnd 11249 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
102100nnne0d 11278 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
10398, 101, 102divcld 11014 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
10443, 4, 103, 32dgrle 24219 . . 3 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ≤ 𝑁)
10586, 104eqbrtrd 4827 . 2 (𝜑 → (deg‘𝑇) ≤ 𝑁)
10671, 105jca 555 1 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  Vcvv 3341  wss 3716  {csn 4322  {cpr 4324   class class class wbr 4805  cmpt 4882   I cid 5174   × cxp 5265  ccnv 5266  dom cdm 5267  cres 5269  cima 5270  ccom 5271  wf 6046  cfv 6050  (class class class)co 6815  𝑓 cof 7062  pm cpm 8027  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  cle 10288  cmin 10479  -cneg 10480   / cdiv 10897  cn 11233  0cn0 11505  ...cfz 12540  cexp 13075  !cfa 13275  Σcsu 14636  invgcminusg 17645  SubGrpcsubg 17810  SubRingcsubrg 18999  fldccnfld 19969   D𝑛 cdvn 23848  Polycply 24160  Xpcidp 24161  degcdgr 24163   Tayl ctayl 24327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13017  df-exp 13076  df-fac 13276  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-rlim 14440  df-sum 14637  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648  df-subg 17813  df-cntz 17971  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-subrg 19001  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-lp 21163  df-perf 21164  df-cnp 21255  df-haus 21342  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-tsms 22152  df-xms 22347  df-ms 22348  df-0p 23657  df-limc 23850  df-dv 23851  df-dvn 23852  df-ply 24164  df-idp 24165  df-coe 24166  df-dgr 24167  df-tayl 24329
This theorem is referenced by:  taylply  24343  taylthlem2  24348
  Copyright terms: Public domain W3C validator