![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tanhbnd | Structured version Visualization version GIF version |
Description: The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
Ref | Expression |
---|---|
tanhbnd | ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retanhcl 15080 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | |
2 | ax-icn 10179 | . . . . . . . 8 ⊢ i ∈ ℂ | |
3 | recn 10210 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | mulcl 10204 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 698 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
6 | rpcoshcl 15078 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | |
7 | 6 | rpne0d 12062 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0) |
8 | 5, 7 | tancld 15053 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) ∈ ℂ) |
9 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ∈ ℂ) |
10 | ine0 10649 | . . . . . . 7 ⊢ i ≠ 0 | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ≠ 0) |
12 | 8, 9, 11 | divnegd 10998 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
13 | mulneg2 10651 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
14 | 2, 3, 13 | sylancr 698 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (i · -𝐴) = -(i · 𝐴)) |
15 | 14 | fveq2d 6348 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = (tan‘-(i · 𝐴))) |
16 | tanneg 15069 | . . . . . . . 8 ⊢ (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) | |
17 | 5, 7, 16 | syl2anc 696 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) |
18 | 15, 17 | eqtrd 2786 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = -(tan‘(i · 𝐴))) |
19 | 18 | oveq1d 6820 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
20 | 12, 19 | eqtr4d 2789 | . . . 4 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = ((tan‘(i · -𝐴)) / i)) |
21 | renegcl 10528 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
22 | tanhlt1 15081 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) | |
23 | 21, 22 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) |
24 | 20, 23 | eqbrtrd 4818 | . . 3 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) < 1) |
25 | 1re 10223 | . . . 4 ⊢ 1 ∈ ℝ | |
26 | ltnegcon1 10713 | . . . 4 ⊢ ((((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ 1 ∈ ℝ) → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) | |
27 | 1, 25, 26 | sylancl 697 | . . 3 ⊢ (𝐴 ∈ ℝ → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) |
28 | 24, 27 | mpbid 222 | . 2 ⊢ (𝐴 ∈ ℝ → -1 < ((tan‘(i · 𝐴)) / i)) |
29 | tanhlt1 15081 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | |
30 | neg1rr 11309 | . . . 4 ⊢ -1 ∈ ℝ | |
31 | 30 | rexri 10281 | . . 3 ⊢ -1 ∈ ℝ* |
32 | 25 | rexri 10281 | . . 3 ⊢ 1 ∈ ℝ* |
33 | elioo2 12401 | . . 3 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1))) | |
34 | 31, 32, 33 | mp2an 710 | . 2 ⊢ (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1)) |
35 | 1, 28, 29, 34 | syl3anbrc 1426 | 1 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 class class class wbr 4796 ‘cfv 6041 (class class class)co 6805 ℂcc 10118 ℝcr 10119 0cc0 10120 1c1 10121 ici 10122 · cmul 10125 ℝ*cxr 10257 < clt 10258 -cneg 10451 / cdiv 10868 (,)cioo 12360 cosccos 14986 tanctan 14987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 ax-addf 10199 ax-mulf 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-pm 8018 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8505 df-inf 8506 df-oi 8572 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-n0 11477 df-z 11562 df-uz 11872 df-rp 12018 df-ioo 12364 df-ico 12366 df-fz 12512 df-fzo 12652 df-fl 12779 df-seq 12988 df-exp 13047 df-fac 13247 df-bc 13276 df-hash 13304 df-shft 13998 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-limsup 14393 df-clim 14410 df-rlim 14411 df-sum 14608 df-ef 14989 df-sin 14991 df-cos 14992 df-tan 14993 |
This theorem is referenced by: tanregt0 24476 atantan 24841 |
Copyright terms: Public domain | W3C validator |