Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tan2h Structured version   Visualization version   GIF version

Theorem tan2h 33072
Description: Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
tan2h (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))

Proof of Theorem tan2h
StepHypRef Expression
1 0re 10000 . . . . . . . 8 0 ∈ ℝ
2 pire 24148 . . . . . . . . 9 π ∈ ℝ
32rexri 10057 . . . . . . . 8 π ∈ ℝ*
4 icossre 12212 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (0[,)π) ⊆ ℝ)
51, 3, 4mp2an 707 . . . . . . 7 (0[,)π) ⊆ ℝ
65sseli 3584 . . . . . 6 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℝ)
76recnd 10028 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℂ)
87halfcld 11237 . . . 4 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℂ)
96rehalfcld 11239 . . . . . . 7 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℝ)
109rered 13914 . . . . . 6 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) = (𝐴 / 2))
11 elico2 12195 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π)))
121, 3, 11mp2an 707 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π))
13 pipos 24150 . . . . . . . . . . . . 13 0 < π
14 lt0neg2 10495 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
152, 14ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
1613, 15mpbi 220 . . . . . . . . . . . 12 -π < 0
172renegcli 10302 . . . . . . . . . . . . 13 -π ∈ ℝ
18 ltletr 10089 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
1917, 1, 18mp3an12 1411 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
2016, 19mpani 711 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -π < 𝐴))
21 2re 11050 . . . . . . . . . . . . . 14 2 ∈ ℝ
22 2pos 11072 . . . . . . . . . . . . . 14 0 < 2
2321, 22pm3.2i 471 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
24 ltdiv1 10847 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
2517, 23, 24mp3an13 1412 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
26 picn 24149 . . . . . . . . . . . . . 14 π ∈ ℂ
27 2cn 11051 . . . . . . . . . . . . . 14 2 ∈ ℂ
28 2ne0 11073 . . . . . . . . . . . . . 14 2 ≠ 0
29 divneg 10679 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
3026, 27, 28, 29mp3an 1421 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
3130breq1i 4630 . . . . . . . . . . . 12 (-(π / 2) < (𝐴 / 2) ↔ (-π / 2) < (𝐴 / 2))
3225, 31syl6bbr 278 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ -(π / 2) < (𝐴 / 2)))
3320, 32sylibd 229 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -(π / 2) < (𝐴 / 2)))
34 ltdiv1 10847 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
352, 23, 34mp3an23 1413 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
3635biimpd 219 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < π → (𝐴 / 2) < (π / 2)))
3733, 36anim12d 585 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
38 rehalfcl 11218 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3938rexrd 10049 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
40 halfpire 24154 . . . . . . . . . . . . 13 (π / 2) ∈ ℝ
4140renegcli 10302 . . . . . . . . . . . 12 -(π / 2) ∈ ℝ
4241rexri 10057 . . . . . . . . . . 11 -(π / 2) ∈ ℝ*
4340rexri 10057 . . . . . . . . . . 11 (π / 2) ∈ ℝ*
44 elioo5 12189 . . . . . . . . . . 11 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4542, 43, 44mp3an12 1411 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4639, 45syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4737, 46sylibrd 249 . . . . . . . 8 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2))))
48473impib 1259 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
4912, 48sylbi 207 . . . . . 6 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
5010, 49eqeltrd 2698 . . . . 5 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2)))
51 cosne0 24214 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝐴 / 2)) ≠ 0)
528, 50, 51syl2anc 692 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) ≠ 0)
53 tanval 14802 . . . 4 (((𝐴 / 2) ∈ ℂ ∧ (cos‘(𝐴 / 2)) ≠ 0) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
548, 52, 53syl2anc 692 . . 3 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
55 0xr 10046 . . . . . . 7 0 ∈ ℝ*
56 elico1 12176 . . . . . . 7 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π)))
5755, 3, 56mp2an 707 . . . . . 6 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π))
5821, 2remulcli 10014 . . . . . . . . . . 11 (2 · π) ∈ ℝ
5958rexri 10057 . . . . . . . . . 10 (2 · π) ∈ ℝ*
60 1lt2 11154 . . . . . . . . . . . . 13 1 < 2
61 ltmulgt12 10844 . . . . . . . . . . . . . 14 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < π) → (1 < 2 ↔ π < (2 · π)))
622, 21, 13, 61mp3an 1421 . . . . . . . . . . . . 13 (1 < 2 ↔ π < (2 · π))
6360, 62mpbi 220 . . . . . . . . . . . 12 π < (2 · π)
64 xrlttr 11933 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
653, 64mp3an2 1409 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
6663, 65mpan2i 712 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 < (2 · π)))
67 xrltle 11942 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < (2 · π) → 𝐴 ≤ (2 · π)))
6866, 67syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ (2 · π)))
6959, 68mpan2 706 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ (2 · π)))
7069anim2d 588 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (0 ≤ 𝐴𝐴 ≤ (2 · π))))
71 elicc4 12198 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7255, 59, 71mp3an12 1411 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7370, 72sylibrd 249 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π))))
74733impib 1259 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π)))
7557, 74sylbi 207 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (0[,](2 · π)))
76 sin2h 33070 . . . . 5 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
7775, 76syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
781, 2, 13ltleii 10120 . . . . . . . . . . 11 0 ≤ π
79 le0neg2 10497 . . . . . . . . . . . 12 (π ∈ ℝ → (0 ≤ π ↔ -π ≤ 0))
802, 79ax-mp 5 . . . . . . . . . . 11 (0 ≤ π ↔ -π ≤ 0)
8178, 80mpbi 220 . . . . . . . . . 10 -π ≤ 0
8217rexri 10057 . . . . . . . . . . 11 -π ∈ ℝ*
83 xrletr 11949 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 ∈ ℝ*) → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8482, 55, 83mp3an12 1411 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8581, 84mpani 711 . . . . . . . . 9 (𝐴 ∈ ℝ* → (0 ≤ 𝐴 → -π ≤ 𝐴))
86 xrltle 11942 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ π))
873, 86mpan2 706 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ π))
8885, 87anim12d 585 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (-π ≤ 𝐴𝐴 ≤ π)))
89 elicc4 12198 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9082, 3, 89mp3an12 1411 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9188, 90sylibrd 249 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π)))
92913impib 1259 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π))
9357, 92sylbi 207 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (-π[,]π))
94 cos2h 33071 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9593, 94syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9677, 95oveq12d 6633 . . 3 (𝐴 ∈ (0[,)π) → ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
9754, 96eqtrd 2655 . 2 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
98 1re 9999 . . . . 5 1 ∈ ℝ
996recoscld 14818 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℝ)
100 resubcl 10305 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
10198, 99, 100sylancr 694 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℝ)
102101rehalfcld 11239 . . 3 (𝐴 ∈ (0[,)π) → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
103 cosbnd 14855 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
104103simprd 479 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
105 recoscl 14815 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
106 subge0 10501 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
107 halfnneg2 11223 . . . . . . . 8 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
108100, 107syl 17 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
109106, 108bitr3d 270 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
11098, 105, 109sylancr 694 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
111104, 110mpbid 222 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
1126, 111syl 17 . . 3 (𝐴 ∈ (0[,)π) → 0 ≤ ((1 − (cos‘𝐴)) / 2))
113 readdcl 9979 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
11498, 99, 113sylancr 694 . . . . 5 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ)
115103simpld 475 . . . . . . . 8 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
11698renegcli 10302 . . . . . . . . . 10 -1 ∈ ℝ
117 subge0 10501 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
118105, 116, 117sylancl 693 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
119 recn 9986 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
120119coscld 14805 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℂ)
121 ax-1cn 9954 . . . . . . . . . . 11 1 ∈ ℂ
122 subneg 10290 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
123 addcom 10182 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) + 1) = (1 + (cos‘𝐴)))
124122, 123eqtrd 2655 . . . . . . . . . . 11 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
125120, 121, 124sylancl 693 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
126125breq2d 4635 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
127118, 126bitr3d 270 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ (1 + (cos‘𝐴))))
128115, 127mpbid 222 . . . . . . 7 (𝐴 ∈ ℝ → 0 ≤ (1 + (cos‘𝐴)))
1296, 128syl 17 . . . . . 6 (𝐴 ∈ (0[,)π) → 0 ≤ (1 + (cos‘𝐴)))
130 snunioo 12256 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 < π) → ({0} ∪ (0(,)π)) = (0[,)π))
13155, 3, 13, 130mp3an 1421 . . . . . . . . 9 ({0} ∪ (0(,)π)) = (0[,)π)
132131eleq2i 2690 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ 𝐴 ∈ (0[,)π))
133 elun 3737 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
134132, 133bitr3i 266 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
135 elsni 4172 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
136 fveq2 6158 . . . . . . . . . . . . 13 (𝐴 = 0 → (cos‘𝐴) = (cos‘0))
137 cos0 14824 . . . . . . . . . . . . 13 (cos‘0) = 1
138136, 137syl6eq 2671 . . . . . . . . . . . 12 (𝐴 = 0 → (cos‘𝐴) = 1)
139138oveq2d 6631 . . . . . . . . . . 11 (𝐴 = 0 → (1 + (cos‘𝐴)) = (1 + 1))
140 df-2 11039 . . . . . . . . . . 11 2 = (1 + 1)
141139, 140syl6eqr 2673 . . . . . . . . . 10 (𝐴 = 0 → (1 + (cos‘𝐴)) = 2)
14228a1i 11 . . . . . . . . . 10 (𝐴 = 0 → 2 ≠ 0)
143141, 142eqnetrd 2857 . . . . . . . . 9 (𝐴 = 0 → (1 + (cos‘𝐴)) ≠ 0)
144135, 143syl 17 . . . . . . . 8 (𝐴 ∈ {0} → (1 + (cos‘𝐴)) ≠ 0)
145 sinq12gt0 24197 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
146 ltne 10094 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 < (sin‘𝐴)) → (sin‘𝐴) ≠ 0)
1471, 146mpan 705 . . . . . . . . . 10 (0 < (sin‘𝐴) → (sin‘𝐴) ≠ 0)
148 elioore 12163 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ)
149148recnd 10028 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℂ)
150 oveq1 6622 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2))
151150a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2)))
152 df-neg 10229 . . . . . . . . . . . . . . 15 -1 = (0 − 1)
153152eqeq1i 2626 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) ↔ (0 − 1) = (cos‘𝐴))
154 coscl 14801 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
155 0cn 9992 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
156 subadd 10244 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
157155, 121, 156mp3an12 1411 . . . . . . . . . . . . . . 15 ((cos‘𝐴) ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
158154, 157syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
159153, 158syl5bb 272 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
160 sincl 14800 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
161160sqcld 12962 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
162 0cnd 9993 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
163154sqcld 12962 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
164161, 162, 163addcan2d 10200 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ ((sin‘𝐴)↑2) = 0))
165 sincossq 14850 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
166 neg1sqe1 12915 . . . . . . . . . . . . . . . 16 (-1↑2) = 1
167165, 166syl6eqr 2673 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (-1↑2))
168163addid2d 10197 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (0 + ((cos‘𝐴)↑2)) = ((cos‘𝐴)↑2))
169167, 168eqeq12d 2636 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ (-1↑2) = ((cos‘𝐴)↑2)))
170 sqeq0 12883 . . . . . . . . . . . . . . 15 ((sin‘𝐴) ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
171160, 170syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
172164, 169, 1713bitr3d 298 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((-1↑2) = ((cos‘𝐴)↑2) ↔ (sin‘𝐴) = 0))
173151, 159, 1723imtr3d 282 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
174149, 173syl 17 . . . . . . . . . . 11 (𝐴 ∈ (0(,)π) → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
175174necon3d 2811 . . . . . . . . . 10 (𝐴 ∈ (0(,)π) → ((sin‘𝐴) ≠ 0 → (1 + (cos‘𝐴)) ≠ 0))
176147, 175syl5 34 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → (0 < (sin‘𝐴) → (1 + (cos‘𝐴)) ≠ 0))
177145, 176mpd 15 . . . . . . . 8 (𝐴 ∈ (0(,)π) → (1 + (cos‘𝐴)) ≠ 0)
178144, 177jaoi 394 . . . . . . 7 ((𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)) → (1 + (cos‘𝐴)) ≠ 0)
179134, 178sylbi 207 . . . . . 6 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ≠ 0)
180114, 129, 179ne0gt0d 10134 . . . . 5 (𝐴 ∈ (0[,)π) → 0 < (1 + (cos‘𝐴)))
181114, 180elrpd 11829 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ+)
182181rphalfcld 11844 . . 3 (𝐴 ∈ (0[,)π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ+)
183102, 112, 182sqrtdivd 14112 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
1847coscld 14805 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℂ)
185 subcl 10240 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
186121, 184, 185sylancr 694 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℂ)
187 addcl 9978 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
188121, 184, 187sylancr 694 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℂ)
189 2cnne0 11202 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
190 divcan7 10694 . . . . 5 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
191189, 190mp3an3 1410 . . . 4 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
192186, 188, 179, 191syl12anc 1321 . . 3 (𝐴 ∈ (0[,)π) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
193192fveq2d 6162 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
19497, 183, 1933eqtr2d 2661 1 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cun 3558  wss 3560  {csn 4155   class class class wbr 4623  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  *cxr 10033   < clt 10034  cle 10035  cmin 10226  -cneg 10227   / cdiv 10644  2c2 11030  (,)cioo 12133  [,)cico 12135  [,]cicc 12136  cexp 12816  cre 13787  csqrt 13923  sincsin 14738  cosccos 14739  tanctan 14740  πcpi 14741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-ef 14742  df-sin 14744  df-cos 14745  df-tan 14746  df-pi 14747  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator