![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1sep2 | Structured version Visualization version GIF version |
Description: Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1sep2 | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1top 21182 | . . . . . 6 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
2 | t1sep.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | toptopon 20770 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
4 | 1, 3 | sylib 208 | . . . . 5 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘𝑋)) |
5 | ist1-2 21199 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Fre → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
7 | 6 | ibi 256 | . . 3 ⊢ (𝐽 ∈ Fre → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
8 | eleq1 2718 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)) | |
9 | 8 | imbi1d 330 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
10 | 9 | ralbidv 3015 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
11 | eqeq1 2655 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
12 | 10, 11 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝐴 → ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝐴 = 𝑦))) |
13 | eleq1 2718 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | |
14 | 13 | imbi2d 329 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
15 | 14 | ralbidv 3015 | . . . . 5 ⊢ (𝑦 = 𝐵 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
16 | eqeq2 2662 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
17 | 15, 16 | imbi12d 333 | . . . 4 ⊢ (𝑦 = 𝐵 → ((∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝐴 = 𝑦) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵))) |
18 | 12, 17 | rspc2v 3353 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵))) |
19 | 7, 18 | mpan9 485 | . 2 ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
20 | 19 | 3impb 1279 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∪ cuni 4468 ‘cfv 5926 Topctop 20746 TopOnctopon 20763 Frect1 21159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-topgen 16151 df-top 20747 df-topon 20764 df-cld 20871 df-t1 21166 |
This theorem is referenced by: t1sep 21222 isr0 21588 |
Copyright terms: Public domain | W3C validator |