![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1connperf | Structured version Visualization version GIF version |
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
Ref | Expression |
---|---|
t1connperf.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1connperf | ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1𝑜) → 𝐽 ∈ Perf) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1connperf.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
2 | simplr 807 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn) | |
3 | simprr 811 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽) | |
4 | vex 3234 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | snnz 4340 | . . . . . . . . 9 ⊢ {𝑥} ≠ ∅ |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅) |
7 | 1 | t1sncld 21178 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (Clsd‘𝐽)) |
8 | 7 | ad2ant2r 798 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽)) |
9 | 1, 2, 3, 6, 8 | connclo 21266 | . . . . . . 7 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋) |
10 | 4 | ensn1 8061 | . . . . . . 7 ⊢ {𝑥} ≈ 1𝑜 |
11 | 9, 10 | syl6eqbrr 4725 | . . . . . 6 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1𝑜) |
12 | 11 | rexlimdvaa 3061 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽 → 𝑋 ≈ 1𝑜)) |
13 | 12 | con3d 148 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽)) |
14 | ralnex 3021 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽) | |
15 | 13, 14 | syl6ibr 242 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
16 | t1top 21182 | . . . . 5 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top) |
18 | 1 | isperf3 21005 | . . . . 5 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
19 | 18 | baib 964 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
20 | 17, 19 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
21 | 15, 20 | sylibrd 249 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1𝑜 → 𝐽 ∈ Perf)) |
22 | 21 | 3impia 1280 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1𝑜) → 𝐽 ∈ Perf) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 ∅c0 3948 {csn 4210 ∪ cuni 4468 class class class wbr 4685 ‘cfv 5926 1𝑜c1o 7598 ≈ cen 7994 Topctop 20746 Clsdccld 20868 Perfcperf 20987 Frect1 21159 Conncconn 21262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-1o 7605 df-en 7998 df-top 20747 df-cld 20871 df-ntr 20872 df-cls 20873 df-lp 20988 df-perf 20989 df-t1 21166 df-conn 21263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |