![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t0hmph | Structured version Visualization version GIF version |
Description: T0 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t0hmph | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t0top 21354 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
2 | cnt0 21371 | . 2 ⊢ ((𝐽 ∈ Kol2 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ Kol2) | |
3 | 1, 2 | haushmphlem 21811 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ∪ cuni 4575 class class class wbr 4787 Kol2ct0 21331 ≃ chmph 21778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-1o 7717 df-map 8015 df-top 20919 df-topon 20936 df-cn 21252 df-t0 21338 df-hmeo 21779 df-hmph 21780 |
This theorem is referenced by: t0kq 21842 kqhmph 21843 |
Copyright terms: Public domain | W3C validator |