MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symquadlem Structured version   Visualization version   GIF version

Theorem symquadlem 25629
Description: Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
symquadlem.m 𝑀 = (𝑆𝑋)
symquadlem.a (𝜑𝐴𝑃)
symquadlem.b (𝜑𝐵𝑃)
symquadlem.c (𝜑𝐶𝑃)
symquadlem.d (𝜑𝐷𝑃)
symquadlem.x (𝜑𝑋𝑃)
symquadlem.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
symquadlem.2 (𝜑𝐵𝐷)
symquadlem.3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
symquadlem.4 (𝜑 → (𝐵 𝐶) = (𝐷 𝐴))
symquadlem.5 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
symquadlem.6 (𝜑 → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
Assertion
Ref Expression
symquadlem (𝜑𝐴 = (𝑀𝐶))

Proof of Theorem symquadlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 symquadlem.1 . . . . . . . 8 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2 mirval.p . . . . . . . . . . 11 𝑃 = (Base‘𝐺)
3 mirval.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
4 mirval.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
5 mirval.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
6 symquadlem.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
7 symquadlem.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
8 mirval.d . . . . . . . . . . . 12 = (dist‘𝐺)
92, 8, 4, 5, 6, 7tgbtwntriv2 25427 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐵𝐼𝐴))
102, 3, 4, 5, 6, 7, 7, 9btwncolg1 25495 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1110adantr 480 . . . . . . . . 9 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
12 simpr 476 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1312oveq2d 6706 . . . . . . . . . . 11 ((𝜑𝐴 = 𝐶) → (𝐵𝐿𝐴) = (𝐵𝐿𝐶))
1413eleq2d 2716 . . . . . . . . . 10 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐵𝐿𝐴) ↔ 𝐴 ∈ (𝐵𝐿𝐶)))
1512eqeq2d 2661 . . . . . . . . . 10 ((𝜑𝐴 = 𝐶) → (𝐵 = 𝐴𝐵 = 𝐶))
1614, 15orbi12d 746 . . . . . . . . 9 ((𝜑𝐴 = 𝐶) → ((𝐴 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ↔ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)))
1711, 16mpbid 222 . . . . . . . 8 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
181, 17mtand 692 . . . . . . 7 (𝜑 → ¬ 𝐴 = 𝐶)
1918neqned 2830 . . . . . 6 (𝜑𝐴𝐶)
2019ad2antrr 762 . . . . 5 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐴𝐶)
2120necomd 2878 . . . 4 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐶𝐴)
2221neneqd 2828 . . 3 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ 𝐶 = 𝐴)
23 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
245ad2antrr 762 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐺 ∈ TarskiG)
25 symquadlem.m . . . . . 6 𝑀 = (𝑆𝑋)
26 symquadlem.c . . . . . . 7 (𝜑𝐶𝑃)
2726ad2antrr 762 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐶𝑃)
287ad2antrr 762 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐴𝑃)
29 symquadlem.x . . . . . . 7 (𝜑𝑋𝑃)
3029ad2antrr 762 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋𝑃)
31 symquadlem.5 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
3231ad2antrr 762 . . . . . . 7 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
332, 3, 4, 24, 28, 27, 30, 32colcom 25498 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
346ad2antrr 762 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐵𝑃)
35 symquadlem.d . . . . . . . . 9 (𝜑𝐷𝑃)
3635ad2antrr 762 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐷𝑃)
37 eqid 2651 . . . . . . . 8 (cgrG‘𝐺) = (cgrG‘𝐺)
38 simplr 807 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑥𝑃)
39 symquadlem.6 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
402, 3, 4, 5, 6, 35, 29, 39colrot2 25500 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ (𝑋𝐿𝐵) ∨ 𝑋 = 𝐵))
412, 3, 4, 5, 29, 6, 35, 40colcom 25498 . . . . . . . . 9 (𝜑 → (𝐷 ∈ (𝐵𝐿𝑋) ∨ 𝐵 = 𝑋))
4241ad2antrr 762 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐷 ∈ (𝐵𝐿𝑋) ∨ 𝐵 = 𝑋))
43 simpr 476 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩)
44 symquadlem.4 . . . . . . . . 9 (𝜑 → (𝐵 𝐶) = (𝐷 𝐴))
4544ad2antrr 762 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐵 𝐶) = (𝐷 𝐴))
46 symquadlem.3 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
472, 8, 4, 5, 7, 6, 26, 35, 46tgcgrcomlr 25420 . . . . . . . . . 10 (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))
4847ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐵 𝐴) = (𝐷 𝐶))
4948eqcomd 2657 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐷 𝐶) = (𝐵 𝐴))
50 symquadlem.2 . . . . . . . . 9 (𝜑𝐵𝐷)
5150ad2antrr 762 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐵𝐷)
522, 3, 4, 24, 34, 36, 30, 37, 36, 34, 8, 27, 38, 28, 42, 43, 45, 49, 51tgfscgr 25508 . . . . . . 7 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐶) = (𝑥 𝐴))
532, 3, 4, 5, 6, 26, 7, 1ncolcom 25501 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
5453ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
5531orcomd 402 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝐶𝑋 ∈ (𝐴𝐿𝐶)))
5655ord 391 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 𝐶𝑋 ∈ (𝐴𝐿𝐶)))
5718, 56mpd 15 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐴𝐿𝐶))
5857ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋 ∈ (𝐴𝐿𝐶))
5918ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ 𝐴 = 𝐶)
6045eqcomd 2657 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐷 𝐴) = (𝐵 𝐶))
612, 3, 4, 24, 34, 36, 30, 37, 36, 34, 8, 28, 38, 27, 42, 43, 48, 60, 51tgfscgr 25508 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐴) = (𝑥 𝐶))
622, 8, 4, 24, 30, 28, 38, 27, 61tgcgrcomlr 25420 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐴 𝑋) = (𝐶 𝑥))
632, 8, 4, 24, 27, 28axtgcgrrflx 25406 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐶 𝐴) = (𝐴 𝐶))
642, 8, 37, 24, 28, 30, 27, 27, 38, 28, 62, 52, 63trgcgr 25456 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ⟨“𝐴𝑋𝐶”⟩(cgrG‘𝐺)⟨“𝐶𝑥𝐴”⟩)
652, 3, 4, 24, 28, 30, 27, 37, 27, 38, 28, 32, 64lnxfr 25506 . . . . . . . . . . . . 13 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
662, 3, 4, 24, 27, 28, 38, 65colcom 25498 . . . . . . . . . . . 12 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
6766orcomd 402 . . . . . . . . . . 11 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐴 = 𝐶𝑥 ∈ (𝐴𝐿𝐶)))
6867ord 391 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (¬ 𝐴 = 𝐶𝑥 ∈ (𝐴𝐿𝐶)))
6959, 68mpd 15 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑥 ∈ (𝐴𝐿𝐶))
7050neneqd 2828 . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 = 𝐷)
7139orcomd 402 . . . . . . . . . . . 12 (𝜑 → (𝐵 = 𝐷𝑋 ∈ (𝐵𝐿𝐷)))
7271ord 391 . . . . . . . . . . 11 (𝜑 → (¬ 𝐵 = 𝐷𝑋 ∈ (𝐵𝐿𝐷)))
7370, 72mpd 15 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵𝐿𝐷))
7473ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋 ∈ (𝐵𝐿𝐷))
7570ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ 𝐵 = 𝐷)
7639ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
772, 8, 4, 37, 24, 34, 36, 30, 36, 34, 38, 43cgr3swap23 25464 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ⟨“𝐵𝑋𝐷”⟩(cgrG‘𝐺)⟨“𝐷𝑥𝐵”⟩)
782, 3, 4, 24, 34, 30, 36, 37, 36, 38, 34, 76, 77lnxfr 25506 . . . . . . . . . . . . 13 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐷𝐿𝐵) ∨ 𝐷 = 𝐵))
792, 3, 4, 24, 36, 34, 38, 78colcom 25498 . . . . . . . . . . . 12 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
8079orcomd 402 . . . . . . . . . . 11 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐵 = 𝐷𝑥 ∈ (𝐵𝐿𝐷)))
8180ord 391 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (¬ 𝐵 = 𝐷𝑥 ∈ (𝐵𝐿𝐷)))
8275, 81mpd 15 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑥 ∈ (𝐵𝐿𝐷))
832, 4, 3, 24, 28, 27, 34, 36, 54, 58, 69, 74, 82tglineinteq 25585 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋 = 𝑥)
8483oveq1d 6705 . . . . . . 7 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐴) = (𝑥 𝐴))
8552, 84eqtr4d 2688 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐶) = (𝑋 𝐴))
862, 8, 4, 3, 23, 24, 25, 27, 28, 30, 33, 85colmid 25628 . . . . 5 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐴 = (𝑀𝐶) ∨ 𝐶 = 𝐴))
8786orcomd 402 . . . 4 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐶 = 𝐴𝐴 = (𝑀𝐶)))
8887ord 391 . . 3 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (¬ 𝐶 = 𝐴𝐴 = (𝑀𝐶)))
8922, 88mpd 15 . 2 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐴 = (𝑀𝐶))
902, 8, 4, 5, 6, 35axtgcgrrflx 25406 . . 3 (𝜑 → (𝐵 𝐷) = (𝐷 𝐵))
912, 3, 4, 5, 6, 35, 29, 37, 35, 6, 8, 41, 90lnext 25507 . 2 (𝜑 → ∃𝑥𝑃 ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩)
9289, 91r19.29a 3107 1 (𝜑𝐴 = (𝑀𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  ⟨“cs3 13633  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381  cgrGccgrg 25450  pInvGcmir 25592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkg 25397  df-cgrg 25451  df-mir 25593
This theorem is referenced by:  opphllem  25672
  Copyright terms: Public domain W3C validator