![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgplusg | Structured version Visualization version GIF version |
Description: The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) |
Ref | Expression |
---|---|
symgplusg.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgplusg.2 | ⊢ 𝐵 = (Base‘𝐺) |
symgplusg.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
symgplusg | ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgplusg.1 | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symgplusg.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbas 18000 | . . . . 5 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
4 | eqid 2760 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | |
5 | eqid 2760 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
6 | 1, 3, 4, 5 | symgval 17999 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
7 | 6 | fveq2d 6356 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
8 | symgplusg.3 | . . 3 ⊢ + = (+g‘𝐺) | |
9 | fvex 6362 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
10 | 2, 9 | eqeltri 2835 | . . . . 5 ⊢ 𝐵 ∈ V |
11 | 10, 10 | mpt2ex 7415 | . . . 4 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V |
12 | eqid 2760 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
13 | 12 | topgrpplusg 16246 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
14 | 11, 13 | ax-mp 5 | . . 3 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
15 | 7, 8, 14 | 3eqtr4g 2819 | . 2 ⊢ (𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
16 | fvprc 6346 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ∅) | |
17 | 1, 16 | syl5eq 2806 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
18 | 17 | fveq2d 6356 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (+g‘𝐺) = (+g‘∅)) |
19 | plusgid 16179 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
20 | 19 | str0 16113 | . . . 4 ⊢ ∅ = (+g‘∅) |
21 | 18, 8, 20 | 3eqtr4g 2819 | . . 3 ⊢ (¬ 𝐴 ∈ V → + = ∅) |
22 | vex 3343 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
23 | vex 3343 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
24 | 22, 23 | coex 7283 | . . . . . 6 ⊢ (𝑓 ∘ 𝑔) ∈ V |
25 | 4, 24 | fnmpt2i 7407 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn (𝐵 × 𝐵) |
26 | 17 | fveq2d 6356 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
27 | base0 16114 | . . . . . . . . 9 ⊢ ∅ = (Base‘∅) | |
28 | 26, 2, 27 | 3eqtr4g 2819 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → 𝐵 = ∅) |
29 | 28 | xpeq2d 5296 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝐵 × 𝐵) = (𝐵 × ∅)) |
30 | xp0 5710 | . . . . . . 7 ⊢ (𝐵 × ∅) = ∅ | |
31 | 29, 30 | syl6eq 2810 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝐵 × 𝐵) = ∅) |
32 | 31 | fneq2d 6143 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn (𝐵 × 𝐵) ↔ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn ∅)) |
33 | 25, 32 | mpbii 223 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn ∅) |
34 | fn0 6172 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn ∅ ↔ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) | |
35 | 33, 34 | sylib 208 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) |
36 | 21, 35 | eqtr4d 2797 | . 2 ⊢ (¬ 𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
37 | 15, 36 | pm2.61i 176 | 1 ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∅c0 4058 𝒫 cpw 4302 {csn 4321 {ctp 4325 〈cop 4327 × cxp 5264 ∘ ccom 5270 Fn wfn 6044 ‘cfv 6049 ↦ cmpt2 6815 ndxcnx 16056 Basecbs 16059 +gcplusg 16143 TopSetcts 16149 ∏tcpt 16301 SymGrpcsymg 17997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-plusg 16156 df-tset 16162 df-symg 17998 |
This theorem is referenced by: symgov 18010 symgtset 18019 pgrpsubgsymg 18028 symgtgp 22106 |
Copyright terms: Public domain | W3C validator |