![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symginv | Structured version Visualization version GIF version |
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symginv.2 | ⊢ 𝐵 = (Base‘𝐺) |
symginv.3 | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
symginv | ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symggrp.1 | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symginv.2 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | elsymgbas2 17847 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) |
4 | 3 | ibi 256 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) |
5 | f1ocnv 6187 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹:𝐴–1-1-onto→𝐴) |
7 | cnvexg 7154 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹 ∈ V) | |
8 | 1, 2 | elsymgbas2 17847 | . . . . . 6 ⊢ (◡𝐹 ∈ V → (◡𝐹 ∈ 𝐵 ↔ ◡𝐹:𝐴–1-1-onto→𝐴)) |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (◡𝐹 ∈ 𝐵 ↔ ◡𝐹:𝐴–1-1-onto→𝐴)) |
10 | 6, 9 | mpbird 247 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹 ∈ 𝐵) |
11 | eqid 2651 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
12 | 1, 2, 11 | symgov 17856 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ ◡𝐹 ∈ 𝐵) → (𝐹(+g‘𝐺)◡𝐹) = (𝐹 ∘ ◡𝐹)) |
13 | 10, 12 | mpdan 703 | . . 3 ⊢ (𝐹 ∈ 𝐵 → (𝐹(+g‘𝐺)◡𝐹) = (𝐹 ∘ ◡𝐹)) |
14 | f1ococnv2 6201 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐴)) | |
15 | 4, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐴)) |
16 | 1, 2 | elbasfv 15967 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ V) |
17 | 1 | symgid 17867 | . . . 4 ⊢ (𝐴 ∈ V → ( I ↾ 𝐴) = (0g‘𝐺)) |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ( I ↾ 𝐴) = (0g‘𝐺)) |
19 | 13, 15, 18 | 3eqtrd 2689 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺)) |
20 | 1 | symggrp 17866 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 ∈ Grp) |
21 | 16, 20 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐺 ∈ Grp) |
22 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
23 | eqid 2651 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
24 | symginv.3 | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
25 | 2, 11, 23, 24 | grpinvid1 17517 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ◡𝐹 ∈ 𝐵) → ((𝑁‘𝐹) = ◡𝐹 ↔ (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺))) |
26 | 21, 22, 10, 25 | syl3anc 1366 | . 2 ⊢ (𝐹 ∈ 𝐵 → ((𝑁‘𝐹) = ◡𝐹 ↔ (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺))) |
27 | 19, 26 | mpbird 247 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 I cid 5052 ◡ccnv 5142 ↾ cres 5145 ∘ ccom 5147 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 0gc0g 16147 Grpcgrp 17469 invgcminusg 17470 SymGrpcsymg 17843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-plusg 16001 df-tset 16007 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-symg 17844 |
This theorem is referenced by: symgsssg 17933 symgfisg 17934 symgtrinv 17938 psgninv 19976 zrhpsgninv 19979 evpmodpmf1o 19990 mdetleib2 20442 symgtgp 21952 symgfcoeu 29973 madjusmdetlem3 30023 madjusmdetlem4 30024 |
Copyright terms: Public domain | W3C validator |