MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggrp Structured version   Visualization version   GIF version

Theorem symggrp 17991
Description: The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symggrp (𝐴𝑉𝐺 ∈ Grp)

Proof of Theorem symggrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2749 . 2 (𝐴𝑉 → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2749 . 2 (𝐴𝑉 → (+g𝐺) = (+g𝐺))
3 symggrp.1 . . . 4 𝐺 = (SymGrp‘𝐴)
4 eqid 2748 . . . 4 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2748 . . . 4 (+g𝐺) = (+g𝐺)
63, 4, 5symgcl 17982 . . 3 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
763adant1 1122 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
8 coass 5803 . . . 4 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
9 simpr1 1210 . . . . . 6 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
10 simpr2 1212 . . . . . 6 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
113, 4, 5symgov 17981 . . . . . 6 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
129, 10, 11syl2anc 696 . . . . 5 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
1312coeq1d 5427 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘ 𝑧) = ((𝑥𝑦) ∘ 𝑧))
14 simpr3 1214 . . . . . 6 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
153, 4, 5symgov 17981 . . . . . 6 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
1610, 14, 15syl2anc 696 . . . . 5 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
1716coeq2d 5428 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥 ∘ (𝑦(+g𝐺)𝑧)) = (𝑥 ∘ (𝑦𝑧)))
188, 13, 173eqtr4a 2808 . . 3 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦(+g𝐺)𝑧)))
199, 10, 6syl2anc 696 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
203, 4, 5symgov 17981 . . . 4 (((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘ 𝑧))
2119, 14, 20syl2anc 696 . . 3 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘ 𝑧))
223, 4, 5symgcl 17982 . . . . 5 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2310, 14, 22syl2anc 696 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
243, 4, 5symgov 17981 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥 ∘ (𝑦(+g𝐺)𝑧)))
259, 23, 24syl2anc 696 . . 3 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥 ∘ (𝑦(+g𝐺)𝑧)))
2618, 21, 253eqtr4d 2792 . 2 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
27 f1oi 6323 . . 3 ( I ↾ 𝐴):𝐴1-1-onto𝐴
283, 4elsymgbas 17973 . . 3 (𝐴𝑉 → (( I ↾ 𝐴) ∈ (Base‘𝐺) ↔ ( I ↾ 𝐴):𝐴1-1-onto𝐴))
2927, 28mpbiri 248 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
303, 4, 5symgov 17981 . . . 4 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
3129, 30sylan 489 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
323, 4elsymgbas 17973 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
3332biimpa 502 . . . 4 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
34 f1of 6286 . . . 4 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
35 fcoi2 6228 . . . 4 (𝑥:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
3633, 34, 353syl 18 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
3731, 36eqtrd 2782 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = 𝑥)
38 f1ocnv 6298 . . . . 5 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
3938a1i 11 . . . 4 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
403, 4elsymgbas 17973 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
4139, 32, 403imtr4d 283 . . 3 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝐺)))
4241imp 444 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
433, 4, 5symgov 17981 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
4442, 43sylancom 704 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
45 f1ococnv1 6314 . . . 4 (𝑥:𝐴1-1-onto𝐴 → (𝑥𝑥) = ( I ↾ 𝐴))
4633, 45syl 17 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥𝑥) = ( I ↾ 𝐴))
4744, 46eqtrd 2782 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = ( I ↾ 𝐴))
481, 2, 7, 26, 29, 37, 42, 47isgrpd 17616 1 (𝐴𝑉𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127   I cid 5161  ccnv 5253  cres 5256  ccom 5258  wf 6033  1-1-ontowf1o 6036  cfv 6037  (class class class)co 6801  Basecbs 16030  +gcplusg 16114  Grpcgrp 17594  SymGrpcsymg 17968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-plusg 16127  df-tset 16133  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-symg 17969
This theorem is referenced by:  symgid  17992  symginv  17993  galactghm  17994  symgga  17997  pgrpsubgsymgbi  17998  pgrpsubgsymg  17999  idressubgsymg  18001  gsumccatsymgsn  18017  symgsssg  18058  symgfisg  18059  symggen  18061  symgtrinv  18063  psgnunilem5  18085  psgnunilem2  18086  psgnuni  18090  psgneldm2  18095  psgnfitr  18108  psgnghm  20099  zrhpsgninv  20104  evpmodpmf1o  20115  mdetleib2  20567  mdetdiag  20578  mdetralt  20587  mdetunilem7  20597  symgtgp  22077  symgfcoeu  30125  madjusmdetlem3  30175  madjusmdetlem4  30176  pgrple2abl  42625
  Copyright terms: Public domain W3C validator