MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixelsi Structured version   Visualization version   GIF version

Theorem symgfixelsi 17901
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.d 𝐷 = (𝑁 ∖ {𝐾})
Assertion
Ref Expression
symgfixelsi ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝐹(𝑞)   𝑁(𝑞)

Proof of Theorem symgfixelsi
StepHypRef Expression
1 symgfixf.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . . 5 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
31, 2symgfixelq 17899 . . . 4 (𝐹𝑄 → (𝐹𝑄 ↔ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)))
4 f1of1 6174 . . . . . . . . . 10 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁1-1𝑁)
54ad2antrl 764 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹:𝑁1-1𝑁)
6 difssd 3771 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7 f1ores 6189 . . . . . . . . 9 ((𝐹:𝑁1-1𝑁 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
85, 6, 7syl2anc 694 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
9 symgfixf.d . . . . . . . . . . 11 𝐷 = (𝑁 ∖ {𝐾})
109reseq2i 5425 . . . . . . . . . 10 (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾}))
1110a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾})))
129a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝑁 ∖ {𝐾}))
13 f1ofo 6182 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁onto𝑁)
14 foima 6158 . . . . . . . . . . . . . 14 (𝐹:𝑁onto𝑁 → (𝐹𝑁) = 𝑁)
1514eqcomd 2657 . . . . . . . . . . . . 13 (𝐹:𝑁onto𝑁𝑁 = (𝐹𝑁))
1613, 15syl 17 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁𝑁 = (𝐹𝑁))
1716ad2antrl 764 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝑁 = (𝐹𝑁))
18 sneq 4220 . . . . . . . . . . . . . 14 (𝐾 = (𝐹𝐾) → {𝐾} = {(𝐹𝐾)})
1918eqcoms 2659 . . . . . . . . . . . . 13 ((𝐹𝐾) = 𝐾 → {𝐾} = {(𝐹𝐾)})
2019ad2antll 765 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = {(𝐹𝐾)})
21 f1ofn 6176 . . . . . . . . . . . . . 14 (𝐹:𝑁1-1-onto𝑁𝐹 Fn 𝑁)
2221ad2antrl 764 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹 Fn 𝑁)
23 simpl 472 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐾𝑁)
24 fnsnfv 6297 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑁𝐾𝑁) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2522, 23, 24syl2anc 694 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2620, 25eqtrd 2685 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = (𝐹 “ {𝐾}))
2717, 26difeq12d 3762 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
28 dff1o2 6180 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁 ↔ (𝐹 Fn 𝑁 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑁))
2928simp2bi 1097 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁 → Fun 𝐹)
3029ad2antrl 764 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → Fun 𝐹)
31 imadif 6011 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3230, 31syl 17 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3327, 12, 323eqtr4d 2695 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝐹 “ (𝑁 ∖ {𝐾})))
3411, 12, 33f1oeq123d 6171 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → ((𝐹𝐷):𝐷1-1-onto𝐷 ↔ (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾}))))
358, 34mpbird 247 . . . . . . 7 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷):𝐷1-1-onto𝐷)
3635ancoms 468 . . . . . 6 (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷):𝐷1-1-onto𝐷)
37 symgfixf.s . . . . . . 7 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
381, 2, 37, 9symgfixels 17900 . . . . . 6 (𝐹𝑄 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
3936, 38syl5ibr 236 . . . . 5 (𝐹𝑄 → (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷) ∈ 𝑆))
4039expd 451 . . . 4 (𝐹𝑄 → ((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
413, 40sylbid 230 . . 3 (𝐹𝑄 → (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
4241pm2.43i 52 . 2 (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆))
4342impcom 445 1 ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  cdif 3604  wss 3607  {csn 4210  ccnv 5142  ran crn 5144  cres 5145  cima 5146  Fun wfun 5920   Fn wfn 5921  1-1wf1 5923  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926  Basecbs 15904  SymGrpcsymg 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-tset 16007  df-symg 17844
This theorem is referenced by:  symgfixf  17902  psgnfix1  19992  psgndif  19996  zrhcopsgndif  19997  smadiadetlem3  20522
  Copyright terms: Public domain W3C validator