MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfix2 Structured version   Visualization version   GIF version

Theorem symgfix2 18043
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.)
Hypothesis
Ref Expression
symgfix2.p 𝑃 = (Base‘(SymGrp‘𝑁))
Assertion
Ref Expression
symgfix2 (𝐿𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
Distinct variable groups:   𝑘,𝑁   𝑄,𝑘   𝑘,𝐾,𝑞   𝑘,𝐿,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑃(𝑘)   𝑁(𝑞)

Proof of Theorem symgfix2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eldif 3733 . . 3 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}))
2 ianor 962 . . . . 5 (¬ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
3 fveq1 6331 . . . . . . 7 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
43eqeq1d 2773 . . . . . 6 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
54elrab 3515 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
62, 5xchnxbir 322 . . . 4 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
76anbi2i 609 . . 3 ((𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)))
81, 7bitri 264 . 2 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)))
9 pm2.21 121 . . . . 5 𝑄𝑃 → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
10 symgfix2.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
1110symgmov2 18020 . . . . . 6 (𝑄𝑃 → ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙)
12 eqeq2 2782 . . . . . . . . . . 11 (𝑙 = 𝐿 → ((𝑄𝑘) = 𝑙 ↔ (𝑄𝑘) = 𝐿))
1312rexbidv 3200 . . . . . . . . . 10 (𝑙 = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝑙 ↔ ∃𝑘𝑁 (𝑄𝑘) = 𝐿))
1413rspcva 3458 . . . . . . . . 9 ((𝐿𝑁 ∧ ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙) → ∃𝑘𝑁 (𝑄𝑘) = 𝐿)
15 eqeq2 2782 . . . . . . . . . . . . . . . 16 (𝐿 = (𝑄𝑘) → ((𝑄𝐾) = 𝐿 ↔ (𝑄𝐾) = (𝑄𝑘)))
1615eqcoms 2779 . . . . . . . . . . . . . . 15 ((𝑄𝑘) = 𝐿 → ((𝑄𝐾) = 𝐿 ↔ (𝑄𝐾) = (𝑄𝑘)))
1716notbid 307 . . . . . . . . . . . . . 14 ((𝑄𝑘) = 𝐿 → (¬ (𝑄𝐾) = 𝐿 ↔ ¬ (𝑄𝐾) = (𝑄𝑘)))
18 fveq2 6332 . . . . . . . . . . . . . . . 16 (𝐾 = 𝑘 → (𝑄𝐾) = (𝑄𝑘))
1918eqcoms 2779 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → (𝑄𝐾) = (𝑄𝑘))
2019necon3bi 2969 . . . . . . . . . . . . . 14 (¬ (𝑄𝐾) = (𝑄𝑘) → 𝑘𝐾)
2117, 20syl6bi 243 . . . . . . . . . . . . 13 ((𝑄𝑘) = 𝐿 → (¬ (𝑄𝐾) = 𝐿𝑘𝐾))
2221com12 32 . . . . . . . . . . . 12 (¬ (𝑄𝐾) = 𝐿 → ((𝑄𝑘) = 𝐿𝑘𝐾))
2322pm4.71rd 552 . . . . . . . . . . 11 (¬ (𝑄𝐾) = 𝐿 → ((𝑄𝑘) = 𝐿 ↔ (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿)))
2423rexbidv 3200 . . . . . . . . . 10 (¬ (𝑄𝐾) = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝐿 ↔ ∃𝑘𝑁 (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿)))
25 rexdifsn 4460 . . . . . . . . . 10 (∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿 ↔ ∃𝑘𝑁 (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿))
2624, 25syl6bbr 278 . . . . . . . . 9 (¬ (𝑄𝐾) = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝐿 ↔ ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
2714, 26syl5ibcom 235 . . . . . . . 8 ((𝐿𝑁 ∧ ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙) → (¬ (𝑄𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
2827ex 397 . . . . . . 7 (𝐿𝑁 → (∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙 → (¬ (𝑄𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
2928com13 88 . . . . . 6 (¬ (𝑄𝐾) = 𝐿 → (∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3011, 29syl5 34 . . . . 5 (¬ (𝑄𝐾) = 𝐿 → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
319, 30jaoi 844 . . . 4 ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3231com13 88 . . 3 (𝐿𝑁 → (𝑄𝑃 → ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3332impd 396 . 2 (𝐿𝑁 → ((𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
348, 33syl5bi 232 1 (𝐿𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 834   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  cdif 3720  {csn 4316  cfv 6031  Basecbs 16064  SymGrpcsymg 18004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-tset 16168  df-symg 18005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator