MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfix2 Structured version   Visualization version   GIF version

Theorem symgfix2 17776
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.)
Hypothesis
Ref Expression
symgfix2.p 𝑃 = (Base‘(SymGrp‘𝑁))
Assertion
Ref Expression
symgfix2 (𝐿𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
Distinct variable groups:   𝑘,𝑁   𝑄,𝑘   𝑘,𝐾,𝑞   𝑘,𝐿,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑃(𝑘)   𝑁(𝑞)

Proof of Theorem symgfix2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eldif 3570 . . 3 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}))
2 ianor 509 . . . . 5 (¬ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
3 fveq1 6157 . . . . . . 7 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
43eqeq1d 2623 . . . . . 6 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
54elrab 3351 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
62, 5xchnxbir 323 . . . 4 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
76anbi2i 729 . . 3 ((𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)))
81, 7bitri 264 . 2 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)))
9 pm2.21 120 . . . . 5 𝑄𝑃 → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
10 symgfix2.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
1110symgmov2 17753 . . . . . 6 (𝑄𝑃 → ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙)
12 eqeq2 2632 . . . . . . . . . . 11 (𝑙 = 𝐿 → ((𝑄𝑘) = 𝑙 ↔ (𝑄𝑘) = 𝐿))
1312rexbidv 3047 . . . . . . . . . 10 (𝑙 = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝑙 ↔ ∃𝑘𝑁 (𝑄𝑘) = 𝐿))
1413rspcva 3297 . . . . . . . . 9 ((𝐿𝑁 ∧ ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙) → ∃𝑘𝑁 (𝑄𝑘) = 𝐿)
15 eqeq2 2632 . . . . . . . . . . . . . . . 16 (𝐿 = (𝑄𝑘) → ((𝑄𝐾) = 𝐿 ↔ (𝑄𝐾) = (𝑄𝑘)))
1615eqcoms 2629 . . . . . . . . . . . . . . 15 ((𝑄𝑘) = 𝐿 → ((𝑄𝐾) = 𝐿 ↔ (𝑄𝐾) = (𝑄𝑘)))
1716notbid 308 . . . . . . . . . . . . . 14 ((𝑄𝑘) = 𝐿 → (¬ (𝑄𝐾) = 𝐿 ↔ ¬ (𝑄𝐾) = (𝑄𝑘)))
18 fveq2 6158 . . . . . . . . . . . . . . . 16 (𝐾 = 𝑘 → (𝑄𝐾) = (𝑄𝑘))
1918eqcoms 2629 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → (𝑄𝐾) = (𝑄𝑘))
2019necon3bi 2816 . . . . . . . . . . . . . 14 (¬ (𝑄𝐾) = (𝑄𝑘) → 𝑘𝐾)
2117, 20syl6bi 243 . . . . . . . . . . . . 13 ((𝑄𝑘) = 𝐿 → (¬ (𝑄𝐾) = 𝐿𝑘𝐾))
2221com12 32 . . . . . . . . . . . 12 (¬ (𝑄𝐾) = 𝐿 → ((𝑄𝑘) = 𝐿𝑘𝐾))
2322pm4.71rd 666 . . . . . . . . . . 11 (¬ (𝑄𝐾) = 𝐿 → ((𝑄𝑘) = 𝐿 ↔ (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿)))
2423rexbidv 3047 . . . . . . . . . 10 (¬ (𝑄𝐾) = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝐿 ↔ ∃𝑘𝑁 (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿)))
25 rexdifsn 4299 . . . . . . . . . 10 (∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿 ↔ ∃𝑘𝑁 (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿))
2624, 25syl6bbr 278 . . . . . . . . 9 (¬ (𝑄𝐾) = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝐿 ↔ ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
2714, 26syl5ibcom 235 . . . . . . . 8 ((𝐿𝑁 ∧ ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙) → (¬ (𝑄𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
2827ex 450 . . . . . . 7 (𝐿𝑁 → (∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙 → (¬ (𝑄𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
2928com13 88 . . . . . 6 (¬ (𝑄𝐾) = 𝐿 → (∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3011, 29syl5 34 . . . . 5 (¬ (𝑄𝐾) = 𝐿 → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
319, 30jaoi 394 . . . 4 ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3231com13 88 . . 3 (𝐿𝑁 → (𝑄𝑃 → ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3332impd 447 . 2 (𝐿𝑁 → ((𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
348, 33syl5bi 232 1 (𝐿𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  {crab 2912  cdif 3557  {csn 4155  cfv 5857  Basecbs 15800  SymGrpcsymg 17737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-tset 15900  df-symg 17738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator