MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf1lem Structured version   Visualization version   GIF version

Theorem symgextf1lem 18047
Description: Lemma for symgextf1 18048. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf1lem ((𝐾𝑁𝑍𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸𝑋) ≠ (𝐸𝑌)))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf1lem
StepHypRef Expression
1 eqid 2771 . . . . . . 7 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
2 symgext.s . . . . . . 7 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
31, 2symgfv 18014 . . . . . 6 ((𝑍𝑆𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑋) ∈ (𝑁 ∖ {𝐾}))
43adantll 693 . . . . 5 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑋) ∈ (𝑁 ∖ {𝐾}))
5 eldifsni 4457 . . . . . 6 ((𝑍𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝑍𝑋) ≠ 𝐾)
6 symgext.e . . . . . . . . 9 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
72, 6symgextfv 18045 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
87imp 393 . . . . . . 7 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = (𝑍𝑋))
98neeq1d 3002 . . . . . 6 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝐸𝑋) ≠ 𝐾 ↔ (𝑍𝑋) ≠ 𝐾))
105, 9syl5ibr 236 . . . . 5 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) ≠ 𝐾))
114, 10mpd 15 . . . 4 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) ≠ 𝐾)
1211adantrr 696 . . 3 (((𝐾𝑁𝑍𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸𝑋) ≠ 𝐾)
13 elsni 4333 . . . . . 6 (𝑌 ∈ {𝐾} → 𝑌 = 𝐾)
142, 6symgextfve 18046 . . . . . . 7 (𝐾𝑁 → (𝑌 = 𝐾 → (𝐸𝑌) = 𝐾))
1514adantr 466 . . . . . 6 ((𝐾𝑁𝑍𝑆) → (𝑌 = 𝐾 → (𝐸𝑌) = 𝐾))
1613, 15syl5com 31 . . . . 5 (𝑌 ∈ {𝐾} → ((𝐾𝑁𝑍𝑆) → (𝐸𝑌) = 𝐾))
1716adantl 467 . . . 4 ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑌) = 𝐾))
1817impcom 394 . . 3 (((𝐾𝑁𝑍𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸𝑌) = 𝐾)
1912, 18neeqtrrd 3017 . 2 (((𝐾𝑁𝑍𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸𝑋) ≠ (𝐸𝑌))
2019ex 397 1 ((𝐾𝑁𝑍𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸𝑋) ≠ (𝐸𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cdif 3720  ifcif 4225  {csn 4316  cmpt 4863  cfv 6031  Basecbs 16064  SymGrpcsymg 18004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-tset 16168  df-symg 18005
This theorem is referenced by:  symgextf1  18048
  Copyright terms: Public domain W3C validator