![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgextf1lem | Structured version Visualization version GIF version |
Description: Lemma for symgextf1 18048. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextf1lem | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸‘𝑋) ≠ (𝐸‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . . . . 7 ⊢ (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾})) | |
2 | symgext.s | . . . . . . 7 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
3 | 1, 2 | symgfv 18014 | . . . . . 6 ⊢ ((𝑍 ∈ 𝑆 ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾})) |
4 | 3 | adantll 693 | . . . . 5 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾})) |
5 | eldifsni 4457 | . . . . . 6 ⊢ ((𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝑍‘𝑋) ≠ 𝐾) | |
6 | symgext.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
7 | 2, 6 | symgextfv 18045 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
8 | 7 | imp 393 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = (𝑍‘𝑋)) |
9 | 8 | neeq1d 3002 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝐸‘𝑋) ≠ 𝐾 ↔ (𝑍‘𝑋) ≠ 𝐾)) |
10 | 5, 9 | syl5ibr 236 | . . . . 5 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) ≠ 𝐾)) |
11 | 4, 10 | mpd 15 | . . . 4 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) ≠ 𝐾) |
12 | 11 | adantrr 696 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸‘𝑋) ≠ 𝐾) |
13 | elsni 4333 | . . . . . 6 ⊢ (𝑌 ∈ {𝐾} → 𝑌 = 𝐾) | |
14 | 2, 6 | symgextfve 18046 | . . . . . . 7 ⊢ (𝐾 ∈ 𝑁 → (𝑌 = 𝐾 → (𝐸‘𝑌) = 𝐾)) |
15 | 14 | adantr 466 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑌 = 𝐾 → (𝐸‘𝑌) = 𝐾)) |
16 | 13, 15 | syl5com 31 | . . . . 5 ⊢ (𝑌 ∈ {𝐾} → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑌) = 𝐾)) |
17 | 16 | adantl 467 | . . . 4 ⊢ ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑌) = 𝐾)) |
18 | 17 | impcom 394 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸‘𝑌) = 𝐾) |
19 | 12, 18 | neeqtrrd 3017 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸‘𝑋) ≠ (𝐸‘𝑌)) |
20 | 19 | ex 397 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸‘𝑋) ≠ (𝐸‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 ifcif 4225 {csn 4316 ↦ cmpt 4863 ‘cfv 6031 Basecbs 16064 SymGrpcsymg 18004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-tset 16168 df-symg 18005 |
This theorem is referenced by: symgextf1 18048 |
Copyright terms: Public domain | W3C validator |