![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgcl | Structured version Visualization version GIF version |
Description: The group operation of the symmetric group on 𝐴 is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by Mario Carneiro, 28-Jan-2015.) |
Ref | Expression |
---|---|
symgplusg.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgplusg.2 | ⊢ 𝐵 = (Base‘𝐺) |
symgplusg.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
symgcl | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgplusg.1 | . . 3 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symgplusg.2 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | symgplusg.3 | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 1, 2, 3 | symgov 18016 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
5 | 1, 2 | symgbasf1o 18009 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋:𝐴–1-1-onto→𝐴) |
6 | 1, 2 | symgbasf1o 18009 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌:𝐴–1-1-onto→𝐴) |
7 | f1oco 6300 | . . . 4 ⊢ ((𝑋:𝐴–1-1-onto→𝐴 ∧ 𝑌:𝐴–1-1-onto→𝐴) → (𝑋 ∘ 𝑌):𝐴–1-1-onto→𝐴) | |
8 | 5, 6, 7 | syl2an 575 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∘ 𝑌):𝐴–1-1-onto→𝐴) |
9 | coexg 7263 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∘ 𝑌) ∈ V) | |
10 | 1, 2 | elsymgbas2 18007 | . . . 4 ⊢ ((𝑋 ∘ 𝑌) ∈ V → ((𝑋 ∘ 𝑌) ∈ 𝐵 ↔ (𝑋 ∘ 𝑌):𝐴–1-1-onto→𝐴)) |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∘ 𝑌) ∈ 𝐵 ↔ (𝑋 ∘ 𝑌):𝐴–1-1-onto→𝐴)) |
12 | 8, 11 | mpbird 247 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∘ 𝑌) ∈ 𝐵) |
13 | 4, 12 | eqeltrd 2849 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∘ ccom 5253 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 SymGrpcsymg 18003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-plusg 16161 df-tset 16167 df-symg 18004 |
This theorem is referenced by: symggrp 18026 symgfcoeu 30179 fzto1st 30187 mdetpmtr1 30223 madjusmdetlem3 30229 madjusmdetlem4 30230 |
Copyright terms: Public domain | W3C validator |