![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symg2hash | Structured version Visualization version GIF version |
Description: The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.) |
Ref | Expression |
---|---|
symg1bas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symg1bas.2 | ⊢ 𝐵 = (Base‘𝐺) |
symg2bas.0 | ⊢ 𝐴 = {𝐼, 𝐽} |
Ref | Expression |
---|---|
symg2hash | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symg2bas.0 | . . . 4 ⊢ 𝐴 = {𝐼, 𝐽} | |
2 | prfi 8351 | . . . 4 ⊢ {𝐼, 𝐽} ∈ Fin | |
3 | 1, 2 | eqeltri 2799 | . . 3 ⊢ 𝐴 ∈ Fin |
4 | symg1bas.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
5 | symg1bas.2 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
6 | 4, 5 | symghash 17926 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴))) |
7 | 3, 6 | ax-mp 5 | . 2 ⊢ (♯‘𝐵) = (!‘(♯‘𝐴)) |
8 | 1 | fveq2i 6307 | . . . . 5 ⊢ (♯‘𝐴) = (♯‘{𝐼, 𝐽}) |
9 | elex 3316 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
10 | elex 3316 | . . . . . . 7 ⊢ (𝐽 ∈ 𝑊 → 𝐽 ∈ V) | |
11 | id 22 | . . . . . . 7 ⊢ (𝐼 ≠ 𝐽 → 𝐼 ≠ 𝐽) | |
12 | 9, 10, 11 | 3anim123i 1384 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽)) |
13 | hashprb 13298 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽) ↔ (♯‘{𝐼, 𝐽}) = 2) | |
14 | 12, 13 | sylib 208 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘{𝐼, 𝐽}) = 2) |
15 | 8, 14 | syl5eq 2770 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐴) = 2) |
16 | 15 | fveq2d 6308 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (!‘(♯‘𝐴)) = (!‘2)) |
17 | fac2 13181 | . . 3 ⊢ (!‘2) = 2 | |
18 | 16, 17 | syl6eq 2774 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (!‘(♯‘𝐴)) = 2) |
19 | 7, 18 | syl5eq 2770 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 Vcvv 3304 {cpr 4287 ‘cfv 6001 Fincfn 8072 2c2 11183 !cfa 13175 ♯chash 13232 Basecbs 15980 SymGrpcsymg 17918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-map 7976 df-pm 7977 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-card 8878 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-xnn0 11477 df-z 11491 df-uz 11801 df-fz 12441 df-seq 12917 df-fac 13176 df-bc 13205 df-hash 13233 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-plusg 16077 df-tset 16083 df-symg 17919 |
This theorem is referenced by: symg2bas 17939 |
Copyright terms: Public domain | W3C validator |