MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2bas Structured version   Visualization version   GIF version

Theorem symg2bas 17864
Description: The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. This theorem is also valid if the elements are identical: then it collapses to theorem symg1bas 17862. (Contributed by AV, 9-Dec-2018.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2bas ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})

Proof of Theorem symg2bas
StepHypRef Expression
1 eqid 2651 . . . . 5 (SymGrp‘{𝐽}) = (SymGrp‘{𝐽})
2 eqid 2651 . . . . 5 (Base‘(SymGrp‘{𝐽})) = (Base‘(SymGrp‘{𝐽}))
3 eqid 2651 . . . . 5 {𝐽} = {𝐽}
41, 2, 3symg1bas 17862 . . . 4 (𝐽𝑊 → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
54ad2antll 765 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘(SymGrp‘{𝐽})) = {{⟨𝐽, 𝐽⟩}})
6 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
7 symg1bas.1 . . . . . 6 𝐺 = (SymGrp‘𝐴)
8 symg2bas.0 . . . . . . . 8 𝐴 = {𝐼, 𝐽}
9 df-pr 4213 . . . . . . . . 9 {𝐼, 𝐽} = ({𝐼} ∪ {𝐽})
10 sneq 4220 . . . . . . . . . . . 12 (𝐼 = 𝐽 → {𝐼} = {𝐽})
1110uneq1d 3799 . . . . . . . . . . 11 (𝐼 = 𝐽 → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
1211adantr 480 . . . . . . . . . 10 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = ({𝐽} ∪ {𝐽}))
13 unidm 3789 . . . . . . . . . 10 ({𝐽} ∪ {𝐽}) = {𝐽}
1412, 13syl6eq 2701 . . . . . . . . 9 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ({𝐼} ∪ {𝐽}) = {𝐽})
159, 14syl5eq 2697 . . . . . . . 8 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {𝐼, 𝐽} = {𝐽})
168, 15syl5eq 2697 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐴 = {𝐽})
1716fveq2d 6233 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (SymGrp‘𝐴) = (SymGrp‘{𝐽}))
187, 17syl5eq 2697 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐺 = (SymGrp‘{𝐽}))
1918fveq2d 6233 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (Base‘𝐺) = (Base‘(SymGrp‘{𝐽})))
206, 19syl5eq 2697 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = (Base‘(SymGrp‘{𝐽})))
21 id 22 . . . . . . . . 9 (𝐼 = 𝐽𝐼 = 𝐽)
2221, 21opeq12d 4441 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2322adantr 480 . . . . . . 7 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
2423preq1d 4306 . . . . . 6 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
25 eqid 2651 . . . . . . 7 𝐽, 𝐽⟩ = ⟨𝐽, 𝐽
26 opex 4962 . . . . . . . 8 𝐽, 𝐽⟩ ∈ V
2726, 26, 26preqsn 4424 . . . . . . 7 ({⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ↔ (⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ = ⟨𝐽, 𝐽⟩))
2825, 25, 27mpbir2an 975 . . . . . 6 {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
2924, 28syl6eq 2701 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩})
30 opeq1 4433 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐼, 𝐽⟩ = ⟨𝐽, 𝐽⟩)
31 opeq2 4434 . . . . . . . 8 (𝐼 = 𝐽 → ⟨𝐽, 𝐼⟩ = ⟨𝐽, 𝐽⟩)
3230, 31preq12d 4308 . . . . . . 7 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩, ⟨𝐽, 𝐽⟩})
3332, 28syl6eq 2701 . . . . . 6 (𝐼 = 𝐽 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3433adantr 480 . . . . 5 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐽, 𝐽⟩})
3529, 34preq12d 4308 . . . 4 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}})
36 eqid 2651 . . . . 5 {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}
37 snex 4938 . . . . . 6 {⟨𝐽, 𝐽⟩} ∈ V
3837, 37, 37preqsn 4424 . . . . 5 ({{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}} ↔ ({⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩} ∧ {⟨𝐽, 𝐽⟩} = {⟨𝐽, 𝐽⟩}))
3936, 36, 38mpbir2an 975 . . . 4 {{⟨𝐽, 𝐽⟩}, {⟨𝐽, 𝐽⟩}} = {{⟨𝐽, 𝐽⟩}}
4035, 39syl6eq 2701 . . 3 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}} = {{⟨𝐽, 𝐽⟩}})
415, 20, 403eqtr4d 2695 . 2 ((𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
42 fvex 6239 . . . . 5 (Base‘𝐺) ∈ V
436, 42eqeltri 2726 . . . 4 𝐵 ∈ V
4443a1i 11 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 ∈ V)
45 df-ne 2824 . . . . . . . 8 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
4645biimpri 218 . . . . . . 7 𝐼 = 𝐽𝐼𝐽)
4746anim2i 592 . . . . . 6 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
48 df-3an 1056 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) ↔ ((𝐼𝑉𝐽𝑊) ∧ 𝐼𝐽))
4947, 48sylibr 224 . . . . 5 (((𝐼𝑉𝐽𝑊) ∧ ¬ 𝐼 = 𝐽) → (𝐼𝑉𝐽𝑊𝐼𝐽))
5049ancoms 468 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (𝐼𝑉𝐽𝑊𝐼𝐽))
517, 6, 8symg2hash 17863 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (#‘𝐵) = 2)
5250, 51syl 17 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (#‘𝐵) = 2)
53 id 22 . . . . . . . 8 (𝐼𝑉𝐼𝑉)
5453ancri 574 . . . . . . 7 (𝐼𝑉 → (𝐼𝑉𝐼𝑉))
55 id 22 . . . . . . . 8 (𝐽𝑊𝐽𝑊)
5655ancri 574 . . . . . . 7 (𝐽𝑊 → (𝐽𝑊𝐽𝑊))
5754, 56anim12i 589 . . . . . 6 ((𝐼𝑉𝐽𝑊) → ((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)))
58 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
5958ancri 574 . . . . . . 7 (𝐼𝐽 → (𝐼𝐽𝐼𝐽))
6045, 59sylbir 225 . . . . . 6 𝐼 = 𝐽 → (𝐼𝐽𝐼𝐽))
61 f1oprg 6219 . . . . . . 7 (((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) → ((𝐼𝐽𝐼𝐽) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
6261imp 444 . . . . . 6 ((((𝐼𝑉𝐼𝑉) ∧ (𝐽𝑊𝐽𝑊)) ∧ (𝐼𝐽𝐼𝐽)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6357, 60, 62syl2anr 494 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
64 eqidd 2652 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} = {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩})
65 id 22 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → 𝐴 = {𝐼, 𝐽})
6664, 65, 65f1oeq123d 6171 . . . . . 6 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
678, 66ax-mp 5 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
6863, 67sylibr 224 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
69 prex 4939 . . . . 5 {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V
707, 6elsymgbas2 17847 . . . . 5 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ V → ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴))
7169, 70ax-mp 5 . . . 4 ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}:𝐴1-1-onto𝐴)
7268, 71sylibr 224 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵)
73 f1oprswap 6218 . . . . . 6 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
74 eqidd 2652 . . . . . . . 8 (𝐴 = {𝐼, 𝐽} → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
7574, 65, 65f1oeq123d 6171 . . . . . . 7 (𝐴 = {𝐼, 𝐽} → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽}))
768, 75ax-mp 5 . . . . . 6 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:{𝐼, 𝐽}–1-1-onto→{𝐼, 𝐽})
7773, 76sylibr 224 . . . . 5 ((𝐼𝑉𝐽𝑊) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
7877adantl 481 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
79 prex 4939 . . . . 5 {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V
807, 6elsymgbas2 17847 . . . . 5 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ V → ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴))
8179, 80ax-mp 5 . . . 4 ({⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ↔ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}:𝐴1-1-onto𝐴)
8278, 81sylibr 224 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵)
83 opex 4962 . . . . . 6 𝐼, 𝐼⟩ ∈ V
8483, 26pm3.2i 470 . . . . 5 (⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V)
85 opex 4962 . . . . . 6 𝐼, 𝐽⟩ ∈ V
86 opex 4962 . . . . . 6 𝐽, 𝐼⟩ ∈ V
8785, 86pm3.2i 470 . . . . 5 (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)
8884, 87pm3.2i 470 . . . 4 ((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V))
89 opthg2 4977 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ ↔ (𝐼 = 𝐼𝐼 = 𝐽)))
90 eqtr 2670 . . . . . . . . . . 11 ((𝐼 = 𝐼𝐼 = 𝐽) → 𝐼 = 𝐽)
9189, 90syl6bi 243 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐼, 𝐽⟩ → 𝐼 = 𝐽))
9291necon3d 2844 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9392com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9445, 93sylbir 225 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩))
9594imp 444 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩)
9654adantr 480 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝑊) → (𝐼𝑉𝐼𝑉))
97 opthg 4975 . . . . . . . . . . . 12 ((𝐼𝑉𝐼𝑉) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
9896, 97syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ ↔ (𝐼 = 𝐽𝐼 = 𝐼)))
99 simpl 472 . . . . . . . . . . 11 ((𝐼 = 𝐽𝐼 = 𝐼) → 𝐼 = 𝐽)
10098, 99syl6bi 243 . . . . . . . . . 10 ((𝐼𝑉𝐽𝑊) → (⟨𝐼, 𝐼⟩ = ⟨𝐽, 𝐼⟩ → 𝐼 = 𝐽))
101100necon3d 2844 . . . . . . . . 9 ((𝐼𝑉𝐽𝑊) → (𝐼𝐽 → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
102101com12 32 . . . . . . . 8 (𝐼𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
10345, 102sylbir 225 . . . . . . 7 𝐼 = 𝐽 → ((𝐼𝑉𝐽𝑊) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
104103imp 444 . . . . . 6 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩)
10595, 104jca 553 . . . . 5 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → (⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩))
106105orcd 406 . . . 4 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → ((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)))
107 prneimg 4419 . . . 4 (((⟨𝐼, 𝐼⟩ ∈ V ∧ ⟨𝐽, 𝐽⟩ ∈ V) ∧ (⟨𝐼, 𝐽⟩ ∈ V ∧ ⟨𝐽, 𝐼⟩ ∈ V)) → (((⟨𝐼, 𝐼⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐼, 𝐼⟩ ≠ ⟨𝐽, 𝐼⟩) ∨ (⟨𝐽, 𝐽⟩ ≠ ⟨𝐼, 𝐽⟩ ∧ ⟨𝐽, 𝐽⟩ ≠ ⟨𝐽, 𝐼⟩)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}))
10888, 106, 107mpsyl 68 . . 3 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
109 hash2prd 13295 . . . 4 ((𝐵 ∈ V ∧ (#‘𝐵) = 2) → (({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}}))
110109imp 444 . . 3 (((𝐵 ∈ V ∧ (#‘𝐵) = 2) ∧ ({⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} ∈ 𝐵 ∧ {⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩} ≠ {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11144, 52, 72, 82, 108, 110syl23anc 1373 . 2 ((¬ 𝐼 = 𝐽 ∧ (𝐼𝑉𝐽𝑊)) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
11241, 111pm2.61ian 848 1 ((𝐼𝑉𝐽𝑊) → 𝐵 = {{⟨𝐼, 𝐼⟩, ⟨𝐽, 𝐽⟩}, {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩}})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cun 3605  {csn 4210  {cpr 4212  cop 4216  1-1-ontowf1o 5925  cfv 5926  2c2 11108  #chash 13157  Basecbs 15904  SymGrpcsymg 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-seq 12842  df-fac 13101  df-bc 13130  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-tset 16007  df-symg 17844
This theorem is referenced by:  psgnprfval  17987  m2detleiblem1  20478  m2detleiblem5  20479  m2detleiblem6  20480  m2detleiblem3  20483  m2detleiblem4  20484  m2detleib  20485
  Copyright terms: Public domain W3C validator