![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifid | Structured version Visualization version GIF version |
Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
Ref | Expression |
---|---|
symdifid | ⊢ (𝐴 △ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif 3994 | . 2 ⊢ (𝐴 △ 𝐴) = ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) | |
2 | difid 4096 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
3 | 2, 2 | uneq12i 3916 | . 2 ⊢ ((𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴)) = (∅ ∪ ∅) |
4 | un0 4112 | . 2 ⊢ (∅ ∪ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2797 | 1 ⊢ (𝐴 △ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∖ cdif 3720 ∪ cun 3721 △ csymdif 3993 ∅c0 4063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-symdif 3994 df-nul 4064 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |