MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifeq2 Structured version   Visualization version   GIF version

Theorem symdifeq2 3990
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem symdifeq2
StepHypRef Expression
1 symdifeq1 3989 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 symdifcom 3988 . 2 (𝐶𝐴) = (𝐴𝐶)
3 symdifcom 3988 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33eqtr4g 2819 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  csymdif 3986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-symdif 3987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator