![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdifeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symdifeq1 3989 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | |
2 | symdifcom 3988 | . 2 ⊢ (𝐶 △ 𝐴) = (𝐴 △ 𝐶) | |
3 | symdifcom 3988 | . 2 ⊢ (𝐶 △ 𝐵) = (𝐵 △ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2819 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 △ csymdif 3986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-symdif 3987 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |