MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifcom Structured version   Visualization version   GIF version

Theorem symdifcom 3988
Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifcom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem symdifcom
StepHypRef Expression
1 uncom 3900 . 2 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐴𝐵))
2 df-symdif 3987 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
3 df-symdif 3987 . 2 (𝐵𝐴) = ((𝐵𝐴) ∪ (𝐴𝐵))
41, 2, 33eqtr4i 2792 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  cdif 3712  cun 3713  csymdif 3986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-un 3720  df-symdif 3987
This theorem is referenced by:  symdifeq2  3990
  Copyright terms: Public domain W3C validator