MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem6 Structured version   Visualization version   GIF version

Theorem sylow3lem6 18093
Description: Lemma for sylow3 18094, second part. Using the lemma sylow2a 18080, show that the number of sylow subgroups is equivalent mod 𝑃 to the number of fixed points under the group action. But 𝐾 is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem5.a + = (+g𝐺)
sylow3lem5.d = (-g𝐺)
sylow3lem5.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem5.m = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem6.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
Assertion
Ref Expression
sylow3lem6 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥,𝑠,𝑦,𝑧,   𝐾,𝑠,𝑥,𝑦,𝑧   𝑧,𝑁   𝑥,𝑋,𝑦,𝑧   𝐺,𝑠,𝑥,𝑦,𝑧   𝜑,𝑠,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑃,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑠)   (𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑋(𝑠)

Proof of Theorem sylow3lem6
Dummy variables 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
2 sylow3.x . . . . . 6 𝑋 = (Base‘𝐺)
3 sylow3.g . . . . . 6 (𝜑𝐺 ∈ Grp)
4 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
6 sylow3lem5.a . . . . . 6 + = (+g𝐺)
7 sylow3lem5.d . . . . . 6 = (-g𝐺)
8 sylow3lem5.k . . . . . 6 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
9 sylow3lem5.m . . . . . 6 = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
102, 3, 4, 5, 6, 7, 8, 9sylow3lem5 18092 . . . . 5 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
11 eqid 2651 . . . . . . 7 (𝐺s 𝐾) = (𝐺s 𝐾)
1211slwpgp 18074 . . . . . 6 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐾))
138, 12syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐾))
14 slwsubg 18071 . . . . . . . 8 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
158, 14syl 17 . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1611subgbas 17645 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
1715, 16syl 17 . . . . . 6 (𝜑𝐾 = (Base‘(𝐺s 𝐾)))
182subgss 17642 . . . . . . . 8 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
1915, 18syl 17 . . . . . . 7 (𝜑𝐾𝑋)
20 ssfi 8221 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝐾𝑋) → 𝐾 ∈ Fin)
214, 19, 20syl2anc 694 . . . . . 6 (𝜑𝐾 ∈ Fin)
2217, 21eqeltrrd 2731 . . . . 5 (𝜑 → (Base‘(𝐺s 𝐾)) ∈ Fin)
23 pwfi 8302 . . . . . . 7 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
244, 23sylib 208 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ Fin)
25 slwsubg 18071 . . . . . . . . 9 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
262subgss 17642 . . . . . . . . 9 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
2725, 26syl 17 . . . . . . . 8 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
28 selpw 4198 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2927, 28sylibr 224 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
3029ssriv 3640 . . . . . 6 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
31 ssfi 8221 . . . . . 6 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
3224, 30, 31sylancl 695 . . . . 5 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
33 eqid 2651 . . . . 5 {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}
34 eqid 2651 . . . . 5 {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)} = {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)}
351, 10, 13, 22, 32, 33, 34sylow2a 18080 . . . 4 (𝜑𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})))
36 eqcom 2658 . . . . . . . . . . . . . 14 (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
3719adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾𝑋)
3837sselda 3636 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝑋)
3938biantrurd 528 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
4036, 39syl5bb 272 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
41 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝐾)
42 simplr 807 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (𝑃 pSyl 𝐺))
43 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑦 = 𝑠)
44 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑥 = 𝑔)
4544oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑥 + 𝑧) = (𝑔 + 𝑧))
4645, 44oveq12d 6708 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → ((𝑥 + 𝑧) 𝑥) = ((𝑔 + 𝑧) 𝑔))
4743, 46mpteq12dv 4766 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
4847rneqd 5385 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑔𝑦 = 𝑠) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
49 vex 3234 . . . . . . . . . . . . . . . . . 18 𝑠 ∈ V
5049mptex 6527 . . . . . . . . . . . . . . . . 17 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
5150rnex 7142 . . . . . . . . . . . . . . . 16 ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
5248, 9, 51ovmpt2a 6833 . . . . . . . . . . . . . . 15 ((𝑔𝐾𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5341, 42, 52syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5453eqeq1d 2653 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠 ↔ ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠))
55 slwsubg 18071 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝑃 pSyl 𝐺) → 𝑠 ∈ (SubGrp‘𝐺))
5655ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
57 eqid 2651 . . . . . . . . . . . . . . 15 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔))
58 sylow3lem6.n . . . . . . . . . . . . . . 15 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
592, 6, 7, 57, 58conjnmzb 17742 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubGrp‘𝐺) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
6056, 59syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
6140, 54, 603bitr4d 300 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠𝑔𝑁))
6261ralbidva 3014 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔𝐾 𝑔𝑁))
63 dfss3 3625 . . . . . . . . . . 11 (𝐾𝑁 ↔ ∀𝑔𝐾 𝑔𝑁)
6462, 63syl6bbr 278 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠𝐾𝑁))
6517adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾 = (Base‘(𝐺s 𝐾)))
6665raleqdv 3174 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠))
67 eqid 2651 . . . . . . . . . . . . 13 (Base‘(𝐺s 𝑁)) = (Base‘(𝐺s 𝑁))
683ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐺 ∈ Grp)
6958, 2, 6nmzsubg 17682 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
7068, 69syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
71 eqid 2651 . . . . . . . . . . . . . . . 16 (𝐺s 𝑁) = (𝐺s 𝑁)
7271subgbas 17645 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺s 𝑁)))
7370, 72syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 = (Base‘(𝐺s 𝑁)))
744ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑋 ∈ Fin)
752subgss 17642 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
7670, 75syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁𝑋)
77 ssfi 8221 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Fin ∧ 𝑁𝑋) → 𝑁 ∈ Fin)
7874, 76, 77syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
7973, 78eqeltrrd 2731 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (Base‘(𝐺s 𝑁)) ∈ Fin)
808ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl 𝐺))
81 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾𝑁)
8271subgslw 18077 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8370, 80, 81, 82syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
84 simplr 807 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl 𝐺))
8555ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (SubGrp‘𝐺))
8658, 2, 6ssnmz 17683 . . . . . . . . . . . . . . 15 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑁)
8785, 86syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠𝑁)
8871subgslw 18077 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ (𝑃 pSyl 𝐺) ∧ 𝑠𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8970, 84, 87, 88syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
90 fvex 6239 . . . . . . . . . . . . . . . 16 (Base‘𝐺) ∈ V
912, 90eqeltri 2726 . . . . . . . . . . . . . . 15 𝑋 ∈ V
9258, 91rabex2 4847 . . . . . . . . . . . . . 14 𝑁 ∈ V
9371, 6ressplusg 16040 . . . . . . . . . . . . . 14 (𝑁 ∈ V → + = (+g‘(𝐺s 𝑁)))
9492, 93ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(𝐺s 𝑁))
95 eqid 2651 . . . . . . . . . . . . 13 (-g‘(𝐺s 𝑁)) = (-g‘(𝐺s 𝑁))
9667, 79, 83, 89, 94, 95sylow2 18087 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → ∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
9758, 2, 6, 71nmznsg 17685 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
9885, 97syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
99 eqid 2651 . . . . . . . . . . . . . . . 16 (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))
10067, 94, 95, 99conjnsg 17743 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
10198, 100sylan 487 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
102 eqeq2 2662 . . . . . . . . . . . . . 14 (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → (𝑠 = 𝐾𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))))
103101, 102syl5ibrcom 237 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
104103rexlimdva 3060 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
10596, 104mpd 15 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 = 𝐾)
106 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 = 𝐾)
10715ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾 ∈ (SubGrp‘𝐺))
108106, 107eqeltrd 2730 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
109108, 86syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠𝑁)
110106, 109eqsstr3d 3673 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾𝑁)
111105, 110impbida 895 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝐾𝑁𝑠 = 𝐾))
11264, 66, 1113bitr3d 298 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠𝑠 = 𝐾))
113112rabbidva 3219 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾})
114 rabsn 4288 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
1158, 114syl 17 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
116113, 115eqtrd 2685 . . . . . . 7 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝐾})
117116fveq2d 6233 . . . . . 6 (𝜑 → (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = (#‘{𝐾}))
118 hashsng 13197 . . . . . . 7 (𝐾 ∈ (𝑃 pSyl 𝐺) → (#‘{𝐾}) = 1)
1198, 118syl 17 . . . . . 6 (𝜑 → (#‘{𝐾}) = 1)
120117, 119eqtrd 2685 . . . . 5 (𝜑 → (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = 1)
121120oveq2d 6706 . . . 4 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) − (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})) = ((#‘(𝑃 pSyl 𝐺)) − 1))
12235, 121breqtrd 4711 . . 3 (𝜑𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − 1))
123 prmnn 15435 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1245, 123syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
125 hashcl 13185 . . . . . 6 ((𝑃 pSyl 𝐺) ∈ Fin → (#‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
12632, 125syl 17 . . . . 5 (𝜑 → (#‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
127126nn0zd 11518 . . . 4 (𝜑 → (#‘(𝑃 pSyl 𝐺)) ∈ ℤ)
128 1zzd 11446 . . . 4 (𝜑 → 1 ∈ ℤ)
129 moddvds 15038 . . . 4 ((𝑃 ∈ ℕ ∧ (#‘(𝑃 pSyl 𝐺)) ∈ ℤ ∧ 1 ∈ ℤ) → (((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − 1)))
130124, 127, 128, 129syl3anc 1366 . . 3 (𝜑 → (((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − 1)))
131122, 130mpbird 247 . 2 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃))
132 prmuz2 15455 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
133 eluz2b2 11799 . . . 4 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
134 nnre 11065 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
135 1mod 12742 . . . . 5 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
136134, 135sylan 487 . . . 4 ((𝑃 ∈ ℕ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
137133, 136sylbi 207 . . 3 (𝑃 ∈ (ℤ‘2) → (1 mod 𝑃) = 1)
1385, 132, 1373syl 18 . 2 (𝜑 → (1 mod 𝑃) = 1)
139131, 138eqtrd 2685 1 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  wss 3607  𝒫 cpw 4191  {csn 4210  {cpr 4212   class class class wbr 4685  {copab 4745  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cmpt2 6692  Fincfn 7997  cr 9973  1c1 9975   < clt 10112  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725   mod cmo 12708  #chash 13157  cdvds 15027  cprime 15432  Basecbs 15904  s cress 15905  +gcplusg 15988  Grpcgrp 17469  -gcsg 17471  SubGrpcsubg 17635  NrmSGrpcnsg 17636   pGrp cpgp 17992   pSyl cslw 17993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-ga 17769  df-od 17994  df-pgp 17996  df-slw 17997
This theorem is referenced by:  sylow3  18094
  Copyright terms: Public domain W3C validator