![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylow3lem5 | Structured version Visualization version GIF version |
Description: Lemma for sylow3 18255, second part. Reduce the group action of sylow3lem1 18249 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
sylow3lem5.a | ⊢ + = (+g‘𝐺) |
sylow3lem5.d | ⊢ − = (-g‘𝐺) |
sylow3lem5.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
sylow3lem5.m | ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
Ref | Expression |
---|---|
sylow3lem5 | ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3lem5.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) | |
2 | slwsubg 18232 | . . . . . 6 ⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
4 | sylow3.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 4 | subgss 17803 | . . . . 5 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
7 | ssid 3773 | . . . 4 ⊢ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺) | |
8 | resmpt2 6905 | . . . 4 ⊢ ((𝐾 ⊆ 𝑋 ∧ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) | |
9 | 6, 7, 8 | sylancl 574 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) |
10 | sylow3lem5.m | . . 3 ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) | |
11 | 9, 10 | syl6eqr 2823 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = ⊕ ) |
12 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
13 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
14 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
15 | sylow3lem5.a | . . . 4 ⊢ + = (+g‘𝐺) | |
16 | sylow3lem5.d | . . . 4 ⊢ − = (-g‘𝐺) | |
17 | oveq2 6801 | . . . . . . . . 9 ⊢ (𝑧 = 𝑐 → (𝑥 + 𝑧) = (𝑥 + 𝑐)) | |
18 | 17 | oveq1d 6808 | . . . . . . . 8 ⊢ (𝑧 = 𝑐 → ((𝑥 + 𝑧) − 𝑥) = ((𝑥 + 𝑐) − 𝑥)) |
19 | 18 | cbvmptv 4884 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) |
20 | oveq1 6800 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 + 𝑐) = (𝑎 + 𝑐)) | |
21 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) | |
22 | 20, 21 | oveq12d 6811 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑐) − 𝑥) = ((𝑎 + 𝑐) − 𝑎)) |
23 | 22 | mpteq2dv 4879 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
24 | 19, 23 | syl5eq 2817 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
25 | 24 | rneqd 5491 | . . . . 5 ⊢ (𝑥 = 𝑎 → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
26 | mpteq1 4871 | . . . . . 6 ⊢ (𝑦 = 𝑏 → (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) | |
27 | 26 | rneqd 5491 | . . . . 5 ⊢ (𝑦 = 𝑏 → ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
28 | 25, 27 | cbvmpt2v 6882 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
29 | 4, 12, 13, 14, 15, 16, 28 | sylow3lem1 18249 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) |
30 | eqid 2771 | . . . 4 ⊢ (𝐺 ↾s 𝐾) = (𝐺 ↾s 𝐾) | |
31 | 30 | gasubg 17942 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
32 | 29, 3, 31 | syl2anc 573 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
33 | 11, 32 | eqeltrrd 2851 | 1 ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ↦ cmpt 4863 × cxp 5247 ran crn 5250 ↾ cres 5251 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 Fincfn 8109 ℙcprime 15592 Basecbs 16064 ↾s cress 16065 +gcplusg 16149 Grpcgrp 17630 -gcsg 17632 SubGrpcsubg 17796 GrpAct cga 17929 pSyl cslw 18154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-disj 4755 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-omul 7718 df-er 7896 df-ec 7898 df-qs 7902 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-acn 8968 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-q 11992 df-rp 12036 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-dvds 15190 df-gcd 15425 df-prm 15593 df-pc 15749 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-eqg 17801 df-ghm 17866 df-ga 17930 df-od 18155 df-pgp 18157 df-slw 18158 |
This theorem is referenced by: sylow3lem6 18254 |
Copyright terms: Public domain | W3C validator |