Proof of Theorem sylow3lem4
Step | Hyp | Ref
| Expression |
1 | | sylow3.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
2 | | sylow3.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
3 | | sylow3.xf |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
4 | | sylow3.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
5 | | sylow3lem1.a |
. . 3
⊢ + =
(+g‘𝐺) |
6 | | sylow3lem1.d |
. . 3
⊢ − =
(-g‘𝐺) |
7 | | sylow3lem1.m |
. . 3
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
8 | | sylow3lem2.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
9 | | sylow3lem2.h |
. . 3
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} |
10 | | sylow3lem2.n |
. . 3
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sylow3lem3 18250 |
. 2
⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁)))) |
12 | | slwsubg 18231 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
13 | 8, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
14 | | eqid 2770 |
. . . . . . . . . . 11
⊢ (𝐺 ↾s 𝑁) = (𝐺 ↾s 𝑁) |
15 | 10, 1, 5, 14 | nmznsg 17845 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (NrmSGrp‘(𝐺 ↾s 𝑁))) |
16 | | nsgsubg 17833 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (NrmSGrp‘(𝐺 ↾s 𝑁)) → 𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁))) |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁))) |
18 | 13, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁))) |
19 | 10, 1, 5 | nmzsubg 17842 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |
20 | 2, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
21 | 14 | subgbas 17805 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺 ↾s 𝑁))) |
22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 = (Base‘(𝐺 ↾s 𝑁))) |
23 | 1 | subgss 17802 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ 𝑋) |
24 | 20, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ⊆ 𝑋) |
25 | | ssfi 8335 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Fin ∧ 𝑁 ⊆ 𝑋) → 𝑁 ∈ Fin) |
26 | 3, 24, 25 | syl2anc 565 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ Fin) |
27 | 22, 26 | eqeltrrd 2850 |
. . . . . . . 8
⊢ (𝜑 → (Base‘(𝐺 ↾s 𝑁)) ∈ Fin) |
28 | | eqid 2770 |
. . . . . . . . 9
⊢
(Base‘(𝐺
↾s 𝑁)) =
(Base‘(𝐺
↾s 𝑁)) |
29 | 28 | lagsubg 17863 |
. . . . . . . 8
⊢ ((𝐾 ∈ (SubGrp‘(𝐺 ↾s 𝑁)) ∧ (Base‘(𝐺 ↾s 𝑁)) ∈ Fin) →
(♯‘𝐾) ∥
(♯‘(Base‘(𝐺 ↾s 𝑁)))) |
30 | 18, 27, 29 | syl2anc 565 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐾) ∥
(♯‘(Base‘(𝐺 ↾s 𝑁)))) |
31 | 22 | fveq2d 6336 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑁) =
(♯‘(Base‘(𝐺 ↾s 𝑁)))) |
32 | 30, 31 | breqtrrd 4812 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐾) ∥ (♯‘𝑁)) |
33 | | eqid 2770 |
. . . . . . . . . . . 12
⊢
(0g‘𝐺) = (0g‘𝐺) |
34 | 33 | subg0cl 17809 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝐾) |
35 | 13, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐾) |
36 | | ne0i 4067 |
. . . . . . . . . 10
⊢
((0g‘𝐺) ∈ 𝐾 → 𝐾 ≠ ∅) |
37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≠ ∅) |
38 | 1 | subgss 17802 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
39 | 13, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
40 | | ssfi 8335 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Fin ∧ 𝐾 ⊆ 𝑋) → 𝐾 ∈ Fin) |
41 | 3, 39, 40 | syl2anc 565 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Fin) |
42 | | hashnncl 13358 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Fin →
((♯‘𝐾) ∈
ℕ ↔ 𝐾 ≠
∅)) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅)) |
44 | 37, 43 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐾) ∈
ℕ) |
45 | 44 | nnzd 11682 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐾) ∈
ℤ) |
46 | | hashcl 13348 |
. . . . . . . . 9
⊢ (𝑁 ∈ Fin →
(♯‘𝑁) ∈
ℕ0) |
47 | 26, 46 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑁) ∈
ℕ0) |
48 | 47 | nn0zd 11681 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑁) ∈
ℤ) |
49 | | pwfi 8416 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ Fin ↔ 𝒫
𝑋 ∈
Fin) |
50 | 3, 49 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
51 | | eqid 2770 |
. . . . . . . . . . . . 13
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
52 | 1, 51 | eqger 17851 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋) |
53 | 20, 52 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋) |
54 | 53 | qsss 7959 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋) |
55 | | ssfi 8335 |
. . . . . . . . . 10
⊢
((𝒫 𝑋 ∈
Fin ∧ (𝑋 /
(𝐺 ~QG
𝑁)) ⊆ 𝒫 𝑋) → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin) |
56 | 50, 54, 55 | syl2anc 565 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin) |
57 | | hashcl 13348 |
. . . . . . . . 9
⊢ ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈
ℕ0) |
58 | 56, 57 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈
ℕ0) |
59 | 58 | nn0zd 11681 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ) |
60 | | dvdscmul 15216 |
. . . . . . 7
⊢
(((♯‘𝐾)
∈ ℤ ∧ (♯‘𝑁) ∈ ℤ ∧ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ) →
((♯‘𝐾) ∥
(♯‘𝑁) →
((♯‘(𝑋 /
(𝐺 ~QG
𝑁))) ·
(♯‘𝐾)) ∥
((♯‘(𝑋 /
(𝐺 ~QG
𝑁))) ·
(♯‘𝑁)))) |
61 | 45, 48, 59, 60 | syl3anc 1475 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑁) → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥
((♯‘(𝑋 /
(𝐺 ~QG
𝑁))) ·
(♯‘𝑁)))) |
62 | 32, 61 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥
((♯‘(𝑋 /
(𝐺 ~QG
𝑁))) ·
(♯‘𝑁))) |
63 | | hashcl 13348 |
. . . . . . . . 9
⊢ (𝑋 ∈ Fin →
(♯‘𝑋) ∈
ℕ0) |
64 | 3, 63 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ0) |
65 | 64 | nn0cnd 11554 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑋) ∈
ℂ) |
66 | 44 | nncnd 11237 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐾) ∈
ℂ) |
67 | 44 | nnne0d 11266 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐾) ≠ 0) |
68 | 65, 66, 67 | divcan1d 11003 |
. . . . . 6
⊢ (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = (♯‘𝑋)) |
69 | 1, 51, 20, 3 | lagsubg2 17862 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))) |
70 | 68, 69 | eqtrd 2804 |
. . . . 5
⊢ (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))) |
71 | 62, 70 | breqtrrd 4812 |
. . . 4
⊢ (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥
(((♯‘𝑋) /
(♯‘𝐾)) ·
(♯‘𝐾))) |
72 | 1 | lagsubg 17863 |
. . . . . . 7
⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝑋)) |
73 | 13, 3, 72 | syl2anc 565 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐾) ∥ (♯‘𝑋)) |
74 | 64 | nn0zd 11681 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑋) ∈
ℤ) |
75 | | dvdsval2 15191 |
. . . . . . 7
⊢
(((♯‘𝐾)
∈ ℤ ∧ (♯‘𝐾) ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) →
((♯‘𝐾) ∥
(♯‘𝑋) ↔
((♯‘𝑋) /
(♯‘𝐾)) ∈
ℤ)) |
76 | 45, 67, 74, 75 | syl3anc 1475 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (♯‘𝐾)) ∈
ℤ)) |
77 | 73, 76 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) ∈
ℤ) |
78 | | dvdsmulcr 15219 |
. . . . 5
⊢
(((♯‘(𝑋
/ (𝐺
~QG 𝑁)))
∈ ℤ ∧ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ ∧
((♯‘𝐾) ∈
ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥
(((♯‘𝑋) /
(♯‘𝐾)) ·
(♯‘𝐾)) ↔
(♯‘(𝑋 /
(𝐺 ~QG
𝑁))) ∥
((♯‘𝑋) /
(♯‘𝐾)))) |
79 | 59, 77, 45, 67, 78 | syl112anc 1479 |
. . . 4
⊢ (𝜑 → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥
(((♯‘𝑋) /
(♯‘𝐾)) ·
(♯‘𝐾)) ↔
(♯‘(𝑋 /
(𝐺 ~QG
𝑁))) ∥
((♯‘𝑋) /
(♯‘𝐾)))) |
80 | 71, 79 | mpbid 222 |
. . 3
⊢ (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾))) |
81 | 1, 3, 8 | slwhash 18245 |
. . . 4
⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
82 | 81 | oveq2d 6808 |
. . 3
⊢ (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
83 | 80, 82 | breqtrd 4810 |
. 2
⊢ (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
84 | 11, 83 | eqbrtrd 4806 |
1
⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |