MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3 Structured version   Visualization version   GIF version

Theorem sylow3 18254
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3.n 𝑁 = (♯‘(𝑃 pSyl 𝐺))
Assertion
Ref Expression
sylow3 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))

Proof of Theorem sylow3
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑥 𝑦 𝑧 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . . 4 (𝜑𝐺 ∈ Grp)
2 sylow3.xf . . . 4 (𝜑𝑋 ∈ Fin)
3 sylow3.p . . . 4 (𝜑𝑃 ∈ ℙ)
4 sylow3.x . . . . 5 𝑋 = (Base‘𝐺)
54slwn0 18236 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)
61, 2, 3, 5syl3anc 1475 . . 3 (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅)
7 n0 4076 . . 3 ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
86, 7sylib 208 . 2 (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
9 sylow3.n . . . 4 𝑁 = (♯‘(𝑃 pSyl 𝐺))
101adantr 466 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
112adantr 466 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
123adantr 466 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ)
13 eqid 2770 . . . . 5 (+g𝐺) = (+g𝐺)
14 eqid 2770 . . . . 5 (-g𝐺) = (-g𝐺)
15 oveq2 6800 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑎(+g𝐺)𝑐) = (𝑎(+g𝐺)𝑧))
1615oveq1d 6807 . . . . . . . . 9 (𝑐 = 𝑧 → ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎) = ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
1716cbvmptv 4882 . . . . . . . 8 (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
18 oveq1 6799 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
19 id 22 . . . . . . . . . 10 (𝑎 = 𝑥𝑎 = 𝑥)
2018, 19oveq12d 6810 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎) = ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥))
2120mpteq2dv 4877 . . . . . . . 8 (𝑎 = 𝑥 → (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2217, 21syl5eq 2816 . . . . . . 7 (𝑎 = 𝑥 → (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2322rneqd 5491 . . . . . 6 (𝑎 = 𝑥 → ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
24 mpteq1 4869 . . . . . . 7 (𝑏 = 𝑦 → (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2524rneqd 5491 . . . . . 6 (𝑏 = 𝑦 → ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2623, 25cbvmpt2v 6881 . . . . 5 (𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
27 simpr 471 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺))
28 eqid 2770 . . . . 5 {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘} = {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘}
29 eqid 2770 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)}
304, 10, 11, 12, 13, 14, 26, 27, 28, 29sylow3lem4 18251 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
319, 30syl5eqbr 4819 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
329oveq1i 6802 . . . 4 (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃)
3323, 25cbvmpt2v 6881 . . . . 5 (𝑎𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
34 eqid 2770 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)}
354, 10, 11, 12, 13, 14, 27, 33, 34sylow3lem6 18253 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
3632, 35syl5eq 2816 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1)
3731, 36jca 495 . 2 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
388, 37exlimddv 2014 1 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wex 1851  wcel 2144  wne 2942  wral 3060  {crab 3064  c0 4061   class class class wbr 4784  cmpt 4861  ran crn 5250  cfv 6031  (class class class)co 6792  cmpt2 6794  Fincfn 8108  1c1 10138   / cdiv 10885   mod cmo 12875  cexp 13066  chash 13320  cdvds 15188  cprime 15591   pCnt cpc 15747  Basecbs 16063  +gcplusg 16148  Grpcgrp 17629  -gcsg 17631   pSyl cslw 18153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-omul 7717  df-er 7895  df-ec 7897  df-qs 7901  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-acn 8967  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-dvds 15189  df-gcd 15424  df-prm 15592  df-pc 15748  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-nsg 17799  df-eqg 17800  df-ghm 17865  df-ga 17929  df-od 18154  df-pgp 18156  df-slw 18157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator