MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem2 Structured version   Visualization version   GIF version

Theorem sylow2blem2 18236
Description: Lemma for sylow2b 18238. Left multiplication in a subgroup 𝐻 is a group action on the set of all left cosets of 𝐾. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow2blem2 (𝜑· ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐾,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝜑,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sylow2blem2
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.h . . . 4 (𝜑𝐻 ∈ (SubGrp‘𝐺))
2 eqid 2760 . . . . 5 (𝐺s 𝐻) = (𝐺s 𝐻)
32subggrp 17798 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
41, 3syl 17 . . 3 (𝜑 → (𝐺s 𝐻) ∈ Grp)
5 sylow2b.xf . . . . 5 (𝜑𝑋 ∈ Fin)
6 pwfi 8426 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
75, 6sylib 208 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
8 sylow2b.k . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
9 sylow2b.x . . . . . . 7 𝑋 = (Base‘𝐺)
10 sylow2b.r . . . . . . 7 = (𝐺 ~QG 𝐾)
119, 10eqger 17845 . . . . . 6 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
128, 11syl 17 . . . . 5 (𝜑 Er 𝑋)
1312qsss 7975 . . . 4 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
147, 13ssexd 4957 . . 3 (𝜑 → (𝑋 / ) ∈ V)
154, 14jca 555 . 2 (𝜑 → ((𝐺s 𝐻) ∈ Grp ∧ (𝑋 / ) ∈ V))
16 sylow2b.m . . . . . . 7 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
17 vex 3343 . . . . . . . . 9 𝑦 ∈ V
1817mptex 6650 . . . . . . . 8 (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ V
1918rnex 7265 . . . . . . 7 ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ V
2016, 19fnmpt2i 7407 . . . . . 6 · Fn (𝐻 × (𝑋 / ))
2120a1i 11 . . . . 5 (𝜑· Fn (𝐻 × (𝑋 / )))
22 eqid 2760 . . . . . . . 8 (𝑋 / ) = (𝑋 / )
23 oveq2 6821 . . . . . . . . 9 ([𝑠] = 𝑣 → (𝑢 · [𝑠] ) = (𝑢 · 𝑣))
2423eleq1d 2824 . . . . . . . 8 ([𝑠] = 𝑣 → ((𝑢 · [𝑠] ) ∈ (𝑋 / ) ↔ (𝑢 · 𝑣) ∈ (𝑋 / )))
25 sylow2b.a . . . . . . . . . . 11 + = (+g𝐺)
269, 5, 1, 8, 25, 10, 16sylow2blem1 18235 . . . . . . . . . 10 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 · [𝑠] ) = [(𝑢 + 𝑠)] )
27 ovex 6841 . . . . . . . . . . . 12 (𝐺 ~QG 𝐾) ∈ V
2810, 27eqeltri 2835 . . . . . . . . . . 11 ∈ V
29 subgrcl 17800 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
301, 29syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
31303ad2ant1 1128 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝐺 ∈ Grp)
329subgss 17796 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝜑𝐻𝑋)
3433sselda 3744 . . . . . . . . . . . . 13 ((𝜑𝑢𝐻) → 𝑢𝑋)
35343adant3 1127 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝑢𝑋)
36 simp3 1133 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝑠𝑋)
379, 25grpcl 17631 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑠𝑋) → (𝑢 + 𝑠) ∈ 𝑋)
3831, 35, 36, 37syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 + 𝑠) ∈ 𝑋)
39 ecelqsg 7969 . . . . . . . . . . 11 (( ∈ V ∧ (𝑢 + 𝑠) ∈ 𝑋) → [(𝑢 + 𝑠)] ∈ (𝑋 / ))
4028, 38, 39sylancr 698 . . . . . . . . . 10 ((𝜑𝑢𝐻𝑠𝑋) → [(𝑢 + 𝑠)] ∈ (𝑋 / ))
4126, 40eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 · [𝑠] ) ∈ (𝑋 / ))
42413expa 1112 . . . . . . . 8 (((𝜑𝑢𝐻) ∧ 𝑠𝑋) → (𝑢 · [𝑠] ) ∈ (𝑋 / ))
4322, 24, 42ectocld 7981 . . . . . . 7 (((𝜑𝑢𝐻) ∧ 𝑣 ∈ (𝑋 / )) → (𝑢 · 𝑣) ∈ (𝑋 / ))
4443ralrimiva 3104 . . . . . 6 ((𝜑𝑢𝐻) → ∀𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / ))
4544ralrimiva 3104 . . . . 5 (𝜑 → ∀𝑢𝐻𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / ))
46 ffnov 6929 . . . . 5 ( · :(𝐻 × (𝑋 / ))⟶(𝑋 / ) ↔ ( · Fn (𝐻 × (𝑋 / )) ∧ ∀𝑢𝐻𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / )))
4721, 45, 46sylanbrc 701 . . . 4 (𝜑· :(𝐻 × (𝑋 / ))⟶(𝑋 / ))
482subgbas 17799 . . . . . . 7 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
491, 48syl 17 . . . . . 6 (𝜑𝐻 = (Base‘(𝐺s 𝐻)))
5049xpeq1d 5295 . . . . 5 (𝜑 → (𝐻 × (𝑋 / )) = ((Base‘(𝐺s 𝐻)) × (𝑋 / )))
5150feq2d 6192 . . . 4 (𝜑 → ( · :(𝐻 × (𝑋 / ))⟶(𝑋 / ) ↔ · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / )))
5247, 51mpbid 222 . . 3 (𝜑· :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ))
53 oveq2 6821 . . . . . . 7 ([𝑠] = 𝑢 → ((0g‘(𝐺s 𝐻)) · [𝑠] ) = ((0g‘(𝐺s 𝐻)) · 𝑢))
54 id 22 . . . . . . 7 ([𝑠] = 𝑢 → [𝑠] = 𝑢)
5553, 54eqeq12d 2775 . . . . . 6 ([𝑠] = 𝑢 → (((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ↔ ((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢))
56 oveq2 6821 . . . . . . . 8 ([𝑠] = 𝑢 → ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = ((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢))
57 oveq2 6821 . . . . . . . . 9 ([𝑠] = 𝑢 → (𝑏 · [𝑠] ) = (𝑏 · 𝑢))
5857oveq2d 6829 . . . . . . . 8 ([𝑠] = 𝑢 → (𝑎 · (𝑏 · [𝑠] )) = (𝑎 · (𝑏 · 𝑢)))
5956, 58eqeq12d 2775 . . . . . . 7 ([𝑠] = 𝑢 → (((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
60592ralbidv 3127 . . . . . 6 ([𝑠] = 𝑢 → (∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
6155, 60anbi12d 749 . . . . 5 ([𝑠] = 𝑢 → ((((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))) ↔ (((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢)))))
62 simpl 474 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝜑)
631adantr 472 . . . . . . . . 9 ((𝜑𝑠𝑋) → 𝐻 ∈ (SubGrp‘𝐺))
64 eqid 2760 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
6564subg0cl 17803 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
6663, 65syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → (0g𝐺) ∈ 𝐻)
67 simpr 479 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝑠𝑋)
689, 5, 1, 8, 25, 10, 16sylow2blem1 18235 . . . . . . . 8 ((𝜑 ∧ (0g𝐺) ∈ 𝐻𝑠𝑋) → ((0g𝐺) · [𝑠] ) = [((0g𝐺) + 𝑠)] )
6962, 66, 67, 68syl3anc 1477 . . . . . . 7 ((𝜑𝑠𝑋) → ((0g𝐺) · [𝑠] ) = [((0g𝐺) + 𝑠)] )
702, 64subg0 17801 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g‘(𝐺s 𝐻)))
7163, 70syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → (0g𝐺) = (0g‘(𝐺s 𝐻)))
7271oveq1d 6828 . . . . . . 7 ((𝜑𝑠𝑋) → ((0g𝐺) · [𝑠] ) = ((0g‘(𝐺s 𝐻)) · [𝑠] ))
739, 25, 64grplid 17653 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑠𝑋) → ((0g𝐺) + 𝑠) = 𝑠)
7430, 73sylan 489 . . . . . . . 8 ((𝜑𝑠𝑋) → ((0g𝐺) + 𝑠) = 𝑠)
7574eceq1d 7950 . . . . . . 7 ((𝜑𝑠𝑋) → [((0g𝐺) + 𝑠)] = [𝑠] )
7669, 72, 753eqtr3d 2802 . . . . . 6 ((𝜑𝑠𝑋) → ((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] )
7763adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐻 ∈ (SubGrp‘𝐺))
7877, 29syl 17 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐺 ∈ Grp)
7977, 32syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐻𝑋)
80 simprl 811 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑎𝐻)
8179, 80sseldd 3745 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑎𝑋)
82 simprr 813 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑏𝐻)
8379, 82sseldd 3745 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑏𝑋)
8467adantr 472 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑠𝑋)
859, 25grpass 17632 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋𝑠𝑋)) → ((𝑎 + 𝑏) + 𝑠) = (𝑎 + (𝑏 + 𝑠)))
8678, 81, 83, 84, 85syl13anc 1479 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) + 𝑠) = (𝑎 + (𝑏 + 𝑠)))
8786eceq1d 7950 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → [((𝑎 + 𝑏) + 𝑠)] = [(𝑎 + (𝑏 + 𝑠))] )
8862adantr 472 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝜑)
899, 25grpcl 17631 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑠𝑋) → (𝑏 + 𝑠) ∈ 𝑋)
9078, 83, 84, 89syl3anc 1477 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑏 + 𝑠) ∈ 𝑋)
919, 5, 1, 8, 25, 10, 16sylow2blem1 18235 . . . . . . . . . . 11 ((𝜑𝑎𝐻 ∧ (𝑏 + 𝑠) ∈ 𝑋) → (𝑎 · [(𝑏 + 𝑠)] ) = [(𝑎 + (𝑏 + 𝑠))] )
9288, 80, 90, 91syl3anc 1477 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 · [(𝑏 + 𝑠)] ) = [(𝑎 + (𝑏 + 𝑠))] )
9387, 92eqtr4d 2797 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → [((𝑎 + 𝑏) + 𝑠)] = (𝑎 · [(𝑏 + 𝑠)] ))
9425subgcl 17805 . . . . . . . . . . 11 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑎𝐻𝑏𝐻) → (𝑎 + 𝑏) ∈ 𝐻)
9577, 80, 82, 94syl3anc 1477 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 + 𝑏) ∈ 𝐻)
969, 5, 1, 8, 25, 10, 16sylow2blem1 18235 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 + 𝑏) ∈ 𝐻𝑠𝑋) → ((𝑎 + 𝑏) · [𝑠] ) = [((𝑎 + 𝑏) + 𝑠)] )
9788, 95, 84, 96syl3anc 1477 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) · [𝑠] ) = [((𝑎 + 𝑏) + 𝑠)] )
989, 5, 1, 8, 25, 10, 16sylow2blem1 18235 . . . . . . . . . . 11 ((𝜑𝑏𝐻𝑠𝑋) → (𝑏 · [𝑠] ) = [(𝑏 + 𝑠)] )
9988, 82, 84, 98syl3anc 1477 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑏 · [𝑠] ) = [(𝑏 + 𝑠)] )
10099oveq2d 6829 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 · (𝑏 · [𝑠] )) = (𝑎 · [(𝑏 + 𝑠)] ))
10193, 97, 1003eqtr4d 2804 . . . . . . . 8 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
102101ralrimivva 3109 . . . . . . 7 ((𝜑𝑠𝑋) → ∀𝑎𝐻𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
10363, 48syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝐻 = (Base‘(𝐺s 𝐻)))
1042, 25ressplusg 16195 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → + = (+g‘(𝐺s 𝐻)))
1051, 104syl 17 . . . . . . . . . . . 12 (𝜑+ = (+g‘(𝐺s 𝐻)))
106105oveqdr 6837 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → (𝑎 + 𝑏) = (𝑎(+g‘(𝐺s 𝐻))𝑏))
107106oveq1d 6828 . . . . . . . . . 10 ((𝜑𝑠𝑋) → ((𝑎 + 𝑏) · [𝑠] ) = ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ))
108107eqeq1d 2762 . . . . . . . . 9 ((𝜑𝑠𝑋) → (((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
109103, 108raleqbidv 3291 . . . . . . . 8 ((𝜑𝑠𝑋) → (∀𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
110103, 109raleqbidv 3291 . . . . . . 7 ((𝜑𝑠𝑋) → (∀𝑎𝐻𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
111102, 110mpbid 222 . . . . . 6 ((𝜑𝑠𝑋) → ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
11276, 111jca 555 . . . . 5 ((𝜑𝑠𝑋) → (((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
11322, 61, 112ectocld 7981 . . . 4 ((𝜑𝑢 ∈ (𝑋 / )) → (((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
114113ralrimiva 3104 . . 3 (𝜑 → ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
11552, 114jca 555 . 2 (𝜑 → ( · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ) ∧ ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢)))))
116 eqid 2760 . . 3 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
117 eqid 2760 . . 3 (+g‘(𝐺s 𝐻)) = (+g‘(𝐺s 𝐻))
118 eqid 2760 . . 3 (0g‘(𝐺s 𝐻)) = (0g‘(𝐺s 𝐻))
119116, 117, 118isga 17924 . 2 ( · ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )) ↔ (((𝐺s 𝐻) ∈ Grp ∧ (𝑋 / ) ∈ V) ∧ ( · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ) ∧ ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))))
12015, 115, 119sylanbrc 701 1 (𝜑· ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  wss 3715  𝒫 cpw 4302  cmpt 4881   × cxp 5264  ran crn 5267   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  cmpt2 6815   Er wer 7908  [cec 7909   / cqs 7910  Fincfn 8121  Basecbs 16059  s cress 16060  +gcplusg 16143  0gc0g 16302  Grpcgrp 17623  SubGrpcsubg 17789   ~QG cqg 17791   GrpAct cga 17922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-eqg 17794  df-ga 17923
This theorem is referenced by:  sylow2blem3  18237
  Copyright terms: Public domain W3C validator