Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem1 Structured version   Visualization version   GIF version

Theorem sylow2blem1 18081
 Description: Lemma for sylow2b 18084. Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow2blem1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐾,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝜑,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sylow2blem1
StepHypRef Expression
1 simp2 1082 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝐻)
2 sylow2b.r . . . . 5 = (𝐺 ~QG 𝐾)
3 ovex 6718 . . . . 5 (𝐺 ~QG 𝐾) ∈ V
42, 3eqeltri 2726 . . . 4 ∈ V
5 simp3 1083 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → 𝐶𝑋)
6 ecelqsg 7845 . . . 4 (( ∈ V ∧ 𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
74, 5, 6sylancr 696 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
8 simpr 476 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑦 = [𝐶] )
9 simpl 472 . . . . . . 7 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑥 = 𝐵)
109oveq1d 6705 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑥 + 𝑧) = (𝐵 + 𝑧))
118, 10mpteq12dv 4766 . . . . 5 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
1211rneqd 5385 . . . 4 ((𝑥 = 𝐵𝑦 = [𝐶] ) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
13 sylow2b.m . . . 4 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
14 ecexg 7791 . . . . . . 7 ( ∈ V → [𝐶] ∈ V)
154, 14ax-mp 5 . . . . . 6 [𝐶] ∈ V
1615mptex 6527 . . . . 5 (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1716rnex 7142 . . . 4 ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1812, 13, 17ovmpt2a 6833 . . 3 ((𝐵𝐻 ∧ [𝐶] ∈ (𝑋 / )) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
191, 7, 18syl2anc 694 . 2 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
20 sylow2b.xf . . . . 5 (𝜑𝑋 ∈ Fin)
21 sylow2b.k . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
22 sylow2b.x . . . . . . . 8 𝑋 = (Base‘𝐺)
2322, 2eqger 17691 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
2421, 23syl 17 . . . . . 6 (𝜑 Er 𝑋)
2524ecss 7831 . . . . 5 (𝜑 → [(𝐵 + 𝐶)] 𝑋)
26 ssfi 8221 . . . . 5 ((𝑋 ∈ Fin ∧ [(𝐵 + 𝐶)] 𝑋) → [(𝐵 + 𝐶)] ∈ Fin)
2720, 25, 26syl2anc 694 . . . 4 (𝜑 → [(𝐵 + 𝐶)] ∈ Fin)
28273ad2ant1 1102 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ Fin)
29 vex 3234 . . . . . . . 8 𝑧 ∈ V
30 elecg 7828 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
3129, 5, 30sylancr 696 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
3231biimpa 500 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → 𝐶 𝑧)
33 sylow2b.h . . . . . . . . . . . 12 (𝜑𝐻 ∈ (SubGrp‘𝐺))
34 subgrcl 17646 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
36353ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐺 ∈ Grp)
3722subgss 17642 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
3833, 37syl 17 . . . . . . . . . . . 12 (𝜑𝐻𝑋)
39383ad2ant1 1102 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → 𝐻𝑋)
4039, 1sseldd 3637 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝑋)
41 sylow2b.a . . . . . . . . . . 11 + = (+g𝐺)
4222, 41grpcl 17477 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4336, 40, 5, 42syl3anc 1366 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4443adantr 480 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) ∈ 𝑋)
4536adantr 480 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐺 ∈ Grp)
4640adantr 480 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐵𝑋)
4722subgss 17642 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
4821, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝐾𝑋)
49 eqid 2651 . . . . . . . . . . . . . 14 (invg𝐺) = (invg𝐺)
5022, 49, 41, 2eqgval 17690 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
5135, 48, 50syl2anc 694 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
52513ad2ant1 1102 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
5352biimpa 500 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾))
5453simp2d 1094 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝑧𝑋)
5522, 41grpcl 17477 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝑧𝑋) → (𝐵 + 𝑧) ∈ 𝑋)
5645, 46, 54, 55syl3anc 1366 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ 𝑋)
5722, 49grpinvcl 17514 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐵 + 𝐶) ∈ 𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5836, 43, 57syl2anc 694 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5958adantr 480 . . . . . . . . . . 11 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
6022, 41grpass 17478 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋𝐵𝑋𝑧𝑋)) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
6145, 59, 46, 54, 60syl13anc 1368 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
6222, 41, 49grpinvadd 17540 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6336, 40, 5, 62syl3anc 1366 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6422, 49grpinvcl 17514 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
6536, 5, 64syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
66 eqid 2651 . . . . . . . . . . . . . . . . 17 (-g𝐺) = (-g𝐺)
6722, 41, 49, 66grpsubval 17512 . . . . . . . . . . . . . . . 16 ((((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6865, 40, 67syl2anc 694 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6963, 68eqtr4d 2688 . . . . . . . . . . . . . 14 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶)(-g𝐺)𝐵))
7069oveq1d 6705 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵))
7122, 41, 66grpnpcan 17554 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7236, 65, 40, 71syl3anc 1366 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7370, 72eqtrd 2685 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((invg𝐺)‘𝐶))
7473oveq1d 6705 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7574adantr 480 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7661, 75eqtr3d 2687 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) = (((invg𝐺)‘𝐶) + 𝑧))
7753simp3d 1095 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)
7876, 77eqeltrd 2730 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)
7922, 49, 41, 2eqgval 17690 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8035, 48, 79syl2anc 694 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
81803ad2ant1 1102 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8281adantr 480 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8344, 56, 78, 82mpbir3and 1264 . . . . . . 7 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) (𝐵 + 𝑧))
84 ovex 6718 . . . . . . . 8 (𝐵 + 𝑧) ∈ V
85 ovex 6718 . . . . . . . 8 (𝐵 + 𝐶) ∈ V
8684, 85elec 7829 . . . . . . 7 ((𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] ↔ (𝐵 + 𝐶) (𝐵 + 𝑧))
8783, 86sylibr 224 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
8832, 87syldan 486 . . . . 5 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
89 eqid 2651 . . . . 5 (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧))
9088, 89fmptd 6425 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] ⟶[(𝐵 + 𝐶)] )
91 frn 6091 . . . 4 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] ⟶[(𝐵 + 𝐶)] → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] )
9290, 91syl 17 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] )
93 eqid 2651 . . . . . . . . . . 11 (𝑧𝑋 ↦ (𝐵 + 𝑧)) = (𝑧𝑋 ↦ (𝐵 + 𝑧))
9422, 41, 93grplmulf1o 17536 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
9536, 40, 94syl2anc 694 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
96 f1of1 6174 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9795, 96syl 17 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9824ecss 7831 . . . . . . . . 9 (𝜑 → [𝐶] 𝑋)
99983ad2ant1 1102 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝑋)
100 f1ssres 6146 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋 ∧ [𝐶] 𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
10197, 99, 100syl2anc 694 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
102 resmpt 5484 . . . . . . . 8 ([𝐶] 𝑋 → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
103 f1eq1 6134 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
10499, 102, 1033syl 18 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
105101, 104mpbid 222 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋)
106 f1f1orn 6186 . . . . . 6 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋 → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
107105, 106syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
10815f1oen 8018 . . . . 5 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → [𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
109 ensym 8046 . . . . 5 ([𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
110107, 108, 1093syl 18 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
111213ad2ant1 1102 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ∈ (SubGrp‘𝐺))
11222, 2eqgen 17694 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [𝐶] ∈ (𝑋 / )) → 𝐾 ≈ [𝐶] )
113111, 7, 112syl2anc 694 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [𝐶] )
114 ensym 8046 . . . . . 6 (𝐾 ≈ [𝐶] → [𝐶] 𝐾)
115113, 114syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝐾)
116 ecelqsg 7845 . . . . . . 7 (( ∈ V ∧ (𝐵 + 𝐶) ∈ 𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
1174, 43, 116sylancr 696 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
11822, 2eqgen 17694 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [(𝐵 + 𝐶)] ∈ (𝑋 / )) → 𝐾 ≈ [(𝐵 + 𝐶)] )
119111, 117, 118syl2anc 694 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [(𝐵 + 𝐶)] )
120 entr 8049 . . . . 5 (([𝐶] 𝐾𝐾 ≈ [(𝐵 + 𝐶)] ) → [𝐶] ≈ [(𝐵 + 𝐶)] )
121115, 119, 120syl2anc 694 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ≈ [(𝐵 + 𝐶)] )
122 entr 8049 . . . 4 ((ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] ∧ [𝐶] ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
123110, 121, 122syl2anc 694 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
124 fisseneq 8212 . . 3 (([(𝐵 + 𝐶)] ∈ Fin ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12528, 92, 123, 124syl3anc 1366 . 2 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12619, 125eqtrd 2685 1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ⊆ wss 3607   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144   ↾ cres 5145  ⟶wf 5922  –1-1→wf1 5923  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692   Er wer 7784  [cec 7785   / cqs 7786   ≈ cen 7994  Fincfn 7997  Basecbs 15904  +gcplusg 15988  Grpcgrp 17469  invgcminusg 17470  -gcsg 17471  SubGrpcsubg 17635   ~QG cqg 17637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-ec 7789  df-qs 7793  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-eqg 17640 This theorem is referenced by:  sylow2blem2  18082  sylow2blem3  18083
 Copyright terms: Public domain W3C validator