![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylow2b | Structured version Visualization version GIF version |
Description: Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃↑𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
sylow2b.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow2b.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow2b.h | ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
sylow2b.k | ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
sylow2b.a | ⊢ + = (+g‘𝐺) |
sylow2b.hp | ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
sylow2b.kn | ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
sylow2b.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
sylow2b | ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow2b.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
2 | sylow2b.xf | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | sylow2b.h | . 2 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) | |
4 | sylow2b.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) | |
5 | sylow2b.a | . 2 ⊢ + = (+g‘𝐺) | |
6 | eqid 2771 | . 2 ⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) | |
7 | oveq2 6804 | . . . . . 6 ⊢ (𝑠 = 𝑧 → (𝑢 + 𝑠) = (𝑢 + 𝑧)) | |
8 | 7 | cbvmptv 4885 | . . . . 5 ⊢ (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) |
9 | oveq1 6803 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 + 𝑧) = (𝑥 + 𝑧)) | |
10 | 9 | mpteq2dv 4880 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
11 | 8, 10 | syl5eq 2817 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
12 | 11 | rneqd 5490 | . . 3 ⊢ (𝑢 = 𝑥 → ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
13 | mpteq1 4872 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) | |
14 | 13 | rneqd 5490 | . . 3 ⊢ (𝑣 = 𝑦 → ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
15 | 12, 14 | cbvmpt2v 6886 | . 2 ⊢ (𝑢 ∈ 𝐻, 𝑣 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠))) = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
16 | sylow2b.hp | . 2 ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) | |
17 | sylow2b.kn | . 2 ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | |
18 | sylow2b.d | . 2 ⊢ − = (-g‘𝐺) | |
19 | 1, 2, 3, 4, 5, 6, 15, 16, 17, 18 | sylow2blem3 18244 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 ⊆ wss 3723 class class class wbr 4787 ↦ cmpt 4864 ran crn 5251 ‘cfv 6030 (class class class)co 6796 ↦ cmpt2 6798 / cqs 7899 Fincfn 8113 ↑cexp 13067 ♯chash 13321 pCnt cpc 15748 Basecbs 16064 ↾s cress 16065 +gcplusg 16149 -gcsg 17632 SubGrpcsubg 17796 ~QG cqg 17798 pGrp cpgp 18153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-disj 4756 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-omul 7722 df-er 7900 df-ec 7902 df-qs 7906 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-acn 8972 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-xnn0 11571 df-z 11585 df-uz 11894 df-q 11997 df-rp 12036 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-dvds 15190 df-gcd 15425 df-prm 15593 df-pc 15749 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-eqg 17801 df-ga 17930 df-od 18155 df-pgp 18157 |
This theorem is referenced by: slwhash 18246 sylow2 18248 |
Copyright terms: Public domain | W3C validator |