Step | Hyp | Ref
| Expression |
1 | | sylow2a.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ Fin) |
2 | | pwfi 8418 |
. . . . 5
⊢ (𝑌 ∈ Fin ↔ 𝒫
𝑌 ∈
Fin) |
3 | 1, 2 | sylib 208 |
. . . 4
⊢ (𝜑 → 𝒫 𝑌 ∈ Fin) |
4 | | sylow2a.m |
. . . . . 6
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
5 | | sylow2a.r |
. . . . . . 7
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
6 | | sylow2a.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
7 | 5, 6 | gaorber 17933 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ∼ Er 𝑌) |
8 | 4, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → ∼ Er 𝑌) |
9 | 8 | qsss 7967 |
. . . 4
⊢ (𝜑 → (𝑌 / ∼ ) ⊆ 𝒫
𝑌) |
10 | | ssfi 8337 |
. . . 4
⊢
((𝒫 𝑌 ∈
Fin ∧ (𝑌 / ∼ )
⊆ 𝒫 𝑌) →
(𝑌 / ∼ )
∈ Fin) |
11 | 3, 9, 10 | syl2anc 696 |
. . 3
⊢ (𝜑 → (𝑌 / ∼ ) ∈
Fin) |
12 | | diffi 8349 |
. . 3
⊢ ((𝑌 / ∼ ) ∈ Fin →
((𝑌 / ∼ )
∖ 𝒫 𝑍) ∈
Fin) |
13 | 11, 12 | syl 17 |
. 2
⊢ (𝜑 → ((𝑌 / ∼ ) ∖ 𝒫
𝑍) ∈
Fin) |
14 | | sylow2a.p |
. . . . 5
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
15 | | gagrp 17917 |
. . . . . . 7
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
16 | 4, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Grp) |
17 | | sylow2a.f |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ Fin) |
18 | 6 | pgpfi 18212 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)))) |
19 | 16, 17, 18 | syl2anc 696 |
. . . . 5
⊢ (𝜑 → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)))) |
20 | 14, 19 | mpbid 222 |
. . . 4
⊢ (𝜑 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛))) |
21 | 20 | simpld 477 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
22 | | prmz 15583 |
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
23 | 21, 22 | syl 17 |
. 2
⊢ (𝜑 → 𝑃 ∈ ℤ) |
24 | | eldifi 3867 |
. . . . 5
⊢ (𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍) → 𝑧 ∈ (𝑌 / ∼ )) |
25 | 1 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑌 ∈ Fin) |
26 | 9 | sselda 3736 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ∈ 𝒫 𝑌) |
27 | 26 | elpwid 4306 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ⊆ 𝑌) |
28 | | ssfi 8337 |
. . . . . 6
⊢ ((𝑌 ∈ Fin ∧ 𝑧 ⊆ 𝑌) → 𝑧 ∈ Fin) |
29 | 25, 27, 28 | syl2anc 696 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ∈ Fin) |
30 | 24, 29 | sylan2 492 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → 𝑧 ∈ Fin) |
31 | | hashcl 13331 |
. . . 4
⊢ (𝑧 ∈ Fin →
(♯‘𝑧) ∈
ℕ0) |
32 | 30, 31 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) →
(♯‘𝑧) ∈
ℕ0) |
33 | 32 | nn0zd 11664 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) →
(♯‘𝑧) ∈
ℤ) |
34 | | eldif 3717 |
. . 3
⊢ (𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍) ↔ (𝑧 ∈ (𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) |
35 | | eqid 2752 |
. . . . 5
⊢ (𝑌 / ∼ ) = (𝑌 / ∼ ) |
36 | | sseq1 3759 |
. . . . . . . 8
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ 𝑍 ↔ 𝑧 ⊆ 𝑍)) |
37 | | selpw 4301 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝒫 𝑍 ↔ 𝑧 ⊆ 𝑍) |
38 | 36, 37 | syl6bbr 278 |
. . . . . . 7
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ 𝑍 ↔ 𝑧 ∈ 𝒫 𝑍)) |
39 | 38 | notbid 307 |
. . . . . 6
⊢ ([𝑤] ∼ = 𝑧 → (¬ [𝑤] ∼ ⊆ 𝑍 ↔ ¬ 𝑧 ∈ 𝒫 𝑍)) |
40 | | fveq2 6344 |
. . . . . . 7
⊢ ([𝑤] ∼ = 𝑧 → (♯‘[𝑤] ∼ ) =
(♯‘𝑧)) |
41 | 40 | breq2d 4808 |
. . . . . 6
⊢ ([𝑤] ∼ = 𝑧 → (𝑃 ∥ (♯‘[𝑤] ∼ ) ↔ 𝑃 ∥ (♯‘𝑧))) |
42 | 39, 41 | imbi12d 333 |
. . . . 5
⊢ ([𝑤] ∼ = 𝑧 → ((¬ [𝑤] ∼ ⊆ 𝑍 → 𝑃 ∥ (♯‘[𝑤] ∼ )) ↔ (¬
𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ (♯‘𝑧)))) |
43 | 21 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℙ) |
44 | 8 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∼ Er 𝑌) |
45 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑌) |
46 | 44, 45 | erref 7923 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∼ 𝑤) |
47 | | vex 3335 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
48 | 47, 47 | elec 7945 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ [𝑤] ∼ ↔ 𝑤 ∼ 𝑤) |
49 | 46, 48 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ [𝑤] ∼ ) |
50 | | ne0i 4056 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ [𝑤] ∼ → [𝑤] ∼ ≠
∅) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → [𝑤] ∼ ≠
∅) |
52 | 8 | ecss 7947 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → [𝑤] ∼ ⊆ 𝑌) |
53 | | ssfi 8337 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ Fin ∧ [𝑤] ∼ ⊆ 𝑌) → [𝑤] ∼ ∈
Fin) |
54 | 1, 52, 53 | syl2anc 696 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑤] ∼ ∈
Fin) |
55 | 54 | adantr 472 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → [𝑤] ∼ ∈
Fin) |
56 | | hashnncl 13341 |
. . . . . . . . . . . 12
⊢ ([𝑤] ∼ ∈ Fin →
((♯‘[𝑤] ∼ )
∈ ℕ ↔ [𝑤]
∼
≠ ∅)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((♯‘[𝑤] ∼ ) ∈ ℕ
↔ [𝑤] ∼ ≠
∅)) |
58 | 51, 57 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) ∈
ℕ) |
59 | | pceq0 15769 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧
(♯‘[𝑤] ∼ )
∈ ℕ) → ((𝑃
pCnt (♯‘[𝑤]
∼
)) = 0 ↔ ¬ 𝑃
∥ (♯‘[𝑤]
∼
))) |
60 | 43, 58, 59 | syl2anc 696 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃 pCnt (♯‘[𝑤] ∼ )) = 0 ↔ ¬
𝑃 ∥
(♯‘[𝑤] ∼
))) |
61 | | oveq2 6813 |
. . . . . . . . . 10
⊢ ((𝑃 pCnt (♯‘[𝑤] ∼ )) = 0 →
(𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0)) |
62 | | hashcl 13331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ([𝑤] ∼ ∈ Fin →
(♯‘[𝑤] ∼ )
∈ ℕ0) |
63 | 54, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (♯‘[𝑤] ∼ ) ∈
ℕ0) |
64 | 63 | nn0zd 11664 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (♯‘[𝑤] ∼ ) ∈
ℤ) |
65 | | ssrab2 3820 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ⊆ 𝑋 |
66 | | ssfi 8337 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋 ∈ Fin ∧ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ⊆ 𝑋) → {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin) |
67 | 17, 65, 66 | sylancl 697 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin) |
68 | | hashcl 13331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin → (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈
ℕ0) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈
ℕ0) |
70 | 69 | nn0zd 11664 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈ ℤ) |
71 | | dvdsmul1 15197 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘[𝑤]
∼
) ∈ ℤ ∧ (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈ ℤ) →
(♯‘[𝑤] ∼ )
∥ ((♯‘[𝑤]
∼
) · (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
72 | 64, 70, 71 | syl2anc 696 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘[𝑤] ∼ ) ∥
((♯‘[𝑤] ∼ )
· (♯‘{𝑣
∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
73 | 72 | adantr 472 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) ∥
((♯‘[𝑤] ∼ )
· (♯‘{𝑣
∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
74 | 4 | adantr 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
75 | 17 | adantr 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑋 ∈ Fin) |
76 | | eqid 2752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} = {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} |
77 | | eqid 2752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) = (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) |
78 | 6, 76, 77, 5 | orbsta2 17939 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑤 ∈ 𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝑤] ∼ ) ·
(♯‘{𝑣 ∈
𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
79 | 74, 45, 75, 78 | syl21anc 1472 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘𝑋) = ((♯‘[𝑤] ∼ ) ·
(♯‘{𝑣 ∈
𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
80 | 73, 79 | breqtrrd 4824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) ∥
(♯‘𝑋)) |
81 | 20 | simprd 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)) |
82 | 81 | adantr 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)) |
83 | | breq2 4800 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑋) =
(𝑃↑𝑛) → ((♯‘[𝑤] ∼ ) ∥
(♯‘𝑋) ↔
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛))) |
84 | 83 | biimpcd 239 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘[𝑤]
∼
) ∥ (♯‘𝑋)
→ ((♯‘𝑋) =
(𝑃↑𝑛) → (♯‘[𝑤] ∼ ) ∥ (𝑃↑𝑛))) |
85 | 84 | reximdv 3146 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘[𝑤]
∼
) ∥ (♯‘𝑋)
→ (∃𝑛 ∈
ℕ0 (♯‘𝑋) = (𝑃↑𝑛) → ∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛))) |
86 | 80, 82, 85 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛)) |
87 | | pcprmpw2 15780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℙ ∧
(♯‘[𝑤] ∼ )
∈ ℕ) → (∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛) ↔ (♯‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼
))))) |
88 | 43, 58, 87 | syl2anc 696 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛) ↔ (♯‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼
))))) |
89 | 86, 88 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼
)))) |
90 | 89 | eqcomd 2758 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) =
(♯‘[𝑤] ∼
)) |
91 | 23 | adantr 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℤ) |
92 | 91 | zcnd 11667 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℂ) |
93 | 92 | exp0d 13188 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑0) = 1) |
94 | | hash1 13376 |
. . . . . . . . . . . . . . 15
⊢
(♯‘1𝑜) = 1 |
95 | 93, 94 | syl6eqr 2804 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑0) =
(♯‘1𝑜)) |
96 | 90, 95 | eqeq12d 2767 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) ↔
(♯‘[𝑤] ∼ ) =
(♯‘1𝑜))) |
97 | | df1o2 7733 |
. . . . . . . . . . . . . . 15
⊢
1𝑜 = {∅} |
98 | | snfi 8195 |
. . . . . . . . . . . . . . 15
⊢ {∅}
∈ Fin |
99 | 97, 98 | eqeltri 2827 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ Fin |
100 | | hashen 13321 |
. . . . . . . . . . . . . 14
⊢ (([𝑤] ∼ ∈ Fin ∧
1𝑜 ∈ Fin) → ((♯‘[𝑤] ∼ ) =
(♯‘1𝑜) ↔ [𝑤] ∼ ≈
1𝑜)) |
101 | 55, 99, 100 | sylancl 697 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((♯‘[𝑤] ∼ ) =
(♯‘1𝑜) ↔ [𝑤] ∼ ≈
1𝑜)) |
102 | 96, 101 | bitrd 268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) ↔ [𝑤] ∼ ≈
1𝑜)) |
103 | | en1b 8181 |
. . . . . . . . . . . 12
⊢ ([𝑤] ∼ ≈
1𝑜 ↔ [𝑤] ∼ = {∪ [𝑤]
∼
}) |
104 | 102, 103 | syl6bb 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) ↔ [𝑤] ∼ = {∪ [𝑤]
∼
})) |
105 | 45 | adantr 472 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ 𝑌) |
106 | 4 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
107 | 6 | gaf 17920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
108 | 106, 107 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
109 | | simprl 811 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ℎ ∈ 𝑋) |
110 | 108, 109,
105 | fovrnd 6963 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ 𝑌) |
111 | | eqid 2752 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤) |
112 | | oveq1 6812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
113 | 112 | eqeq1d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤) ↔ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤))) |
114 | 113 | rspcev 3441 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ ∈ 𝑋 ∧ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤)) → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
115 | 109, 111,
114 | sylancl 697 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ∃𝑘 ∈
𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
116 | 5 | gaorb 17932 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∼ (ℎ ⊕ 𝑤) ↔ (𝑤 ∈ 𝑌 ∧ (ℎ ⊕ 𝑤) ∈ 𝑌 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤))) |
117 | 105, 110,
115, 116 | syl3anbrc 1426 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∼ (ℎ ⊕ 𝑤)) |
118 | | ovex 6833 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ ⊕ 𝑤) ∈ V |
119 | 118, 47 | elec 7945 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ ⊕ 𝑤) ∈ [𝑤] ∼ ↔ 𝑤 ∼ (ℎ ⊕ 𝑤)) |
120 | 117, 119 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ [𝑤] ∼ ) |
121 | | simprr 813 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → [𝑤] ∼ =
{∪ [𝑤] ∼ }) |
122 | 120, 121 | eleqtrd 2833 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ {∪ [𝑤]
∼
}) |
123 | 118 | elsn 4328 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ⊕ 𝑤) ∈ {∪ [𝑤] ∼ } ↔ (ℎ ⊕ 𝑤) = ∪ [𝑤] ∼ ) |
124 | 122, 123 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) = ∪
[𝑤] ∼ ) |
125 | 49 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ [𝑤] ∼ ) |
126 | 125, 121 | eleqtrd 2833 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ {∪ [𝑤]
∼
}) |
127 | 47 | elsn 4328 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {∪ [𝑤]
∼
} ↔ 𝑤 = ∪ [𝑤]
∼
) |
128 | 126, 127 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 = ∪ [𝑤]
∼
) |
129 | 124, 128 | eqtr4d 2789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) = 𝑤) |
130 | 129 | expr 644 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ ℎ ∈ 𝑋) → ([𝑤] ∼ = {∪ [𝑤]
∼
} → (ℎ ⊕ 𝑤) = 𝑤)) |
131 | 130 | ralrimdva 3099 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ([𝑤] ∼ = {∪ [𝑤]
∼
} → ∀ℎ ∈
𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
132 | 104, 131 | sylbid 230 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) → ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
133 | 61, 132 | syl5 34 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃 pCnt (♯‘[𝑤] ∼ )) = 0 →
∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
134 | 60, 133 | sylbird 250 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ∼ ) →
∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
135 | | oveq2 6813 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑤 → (ℎ ⊕ 𝑢) = (ℎ ⊕ 𝑤)) |
136 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑤 → 𝑢 = 𝑤) |
137 | 135, 136 | eqeq12d 2767 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑤 → ((ℎ ⊕ 𝑢) = 𝑢 ↔ (ℎ ⊕ 𝑤) = 𝑤)) |
138 | 137 | ralbidv 3116 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑤 → (∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
139 | | sylow2a.z |
. . . . . . . . . . 11
⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} |
140 | 138, 139 | elrab2 3499 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑍 ↔ (𝑤 ∈ 𝑌 ∧ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
141 | 140 | baib 982 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑌 → (𝑤 ∈ 𝑍 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
142 | 141 | adantl 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑤 ∈ 𝑍 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
143 | 134, 142 | sylibrd 249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ∼ ) → 𝑤 ∈ 𝑍)) |
144 | 6, 4, 14, 17, 1, 139, 5 | sylow2alem1 18224 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → [𝑤] ∼ = {𝑤}) |
145 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ 𝑍) |
146 | 145 | snssd 4477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {𝑤} ⊆ 𝑍) |
147 | 144, 146 | eqsstrd 3772 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → [𝑤] ∼ ⊆ 𝑍) |
148 | 147 | ex 449 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ 𝑍 → [𝑤] ∼ ⊆ 𝑍)) |
149 | 148 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑤 ∈ 𝑍 → [𝑤] ∼ ⊆ 𝑍)) |
150 | 143, 149 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ∼ ) → [𝑤] ∼ ⊆ 𝑍)) |
151 | 150 | con1d 139 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ [𝑤] ∼ ⊆ 𝑍 → 𝑃 ∥ (♯‘[𝑤] ∼
))) |
152 | 35, 42, 151 | ectocld 7973 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → (¬
𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ (♯‘𝑧))) |
153 | 152 | impr 650 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ (𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) → 𝑃 ∥ (♯‘𝑧)) |
154 | 34, 153 | sylan2b 493 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → 𝑃 ∥ (♯‘𝑧)) |
155 | 13, 23, 33, 154 | fsumdvds 15224 |
1
⊢ (𝜑 → 𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)(♯‘𝑧)) |