MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2a Structured version   Visualization version   GIF version

Theorem sylow2a 18261
Description: A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2a (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.x . . 3 𝑋 = (Base‘𝐺)
2 sylow2a.m . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑌))
3 sylow2a.p . . 3 (𝜑𝑃 pGrp 𝐺)
4 sylow2a.f . . 3 (𝜑𝑋 ∈ Fin)
5 sylow2a.y . . 3 (𝜑𝑌 ∈ Fin)
6 sylow2a.z . . 3 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
7 sylow2a.r . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
81, 2, 3, 4, 5, 6, 7sylow2alem2 18260 . 2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
9 inass 3979 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)))
10 disjdif 4192 . . . . . . . 8 (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1110ineq2i 3969 . . . . . . 7 ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍))) = ((𝑌 / ) ∩ ∅)
12 in0 4123 . . . . . . 7 ((𝑌 / ) ∩ ∅) = ∅
139, 11, 123eqtri 2800 . . . . . 6 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1413a1i 11 . . . . 5 (𝜑 → (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅)
15 inundif 4198 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)) = (𝑌 / )
1615eqcomi 2783 . . . . . 6 (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍))
1716a1i 11 . . . . 5 (𝜑 → (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)))
18 pwfi 8438 . . . . . . 7 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
195, 18sylib 209 . . . . . 6 (𝜑 → 𝒫 𝑌 ∈ Fin)
207, 1gaorber 17968 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
212, 20syl 17 . . . . . . 7 (𝜑 Er 𝑌)
2221qsss 7981 . . . . . 6 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
2319, 22ssfid 8360 . . . . 5 (𝜑 → (𝑌 / ) ∈ Fin)
245adantr 467 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
2522sselda 3758 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4319 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 8360 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
28 hashcl 13371 . . . . . . 7 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
2927, 28syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℕ0)
3029nn0cnd 11577 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℂ)
3114, 17, 23, 30fsumsplit 14701 . . . 4 (𝜑 → Σ𝑧 ∈ (𝑌 / )(♯‘𝑧) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
3221, 5qshash 14788 . . . 4 (𝜑 → (♯‘𝑌) = Σ𝑧 ∈ (𝑌 / )(♯‘𝑧))
33 inss1 3988 . . . . . . . 8 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )
34 ssfi 8357 . . . . . . . 8 (((𝑌 / ) ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
3523, 33, 34sylancl 575 . . . . . . 7 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
36 ax-1cn 10217 . . . . . . 7 1 ∈ ℂ
37 fsumconst 14751 . . . . . . 7 ((((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
3835, 36, 37sylancl 575 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
39 elin 3954 . . . . . . . . . . 11 (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍))
40 eqid 2774 . . . . . . . . . . . . 13 (𝑌 / ) = (𝑌 / )
41 sseq1 3782 . . . . . . . . . . . . . . 15 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
42 selpw 4314 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
4341, 42syl6bbr 279 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
44 breq1 4800 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] ≈ 1𝑜𝑧 ≈ 1𝑜))
4543, 44imbi12d 334 . . . . . . . . . . . . 13 ([𝑤] = 𝑧 → (([𝑤] 𝑍 → [𝑤] ≈ 1𝑜) ↔ (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜)))
4621adantr 467 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → Er 𝑌)
47 simpr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑤𝑌)
4846, 47erref 7937 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑤 𝑤)
49 vex 3358 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
5049, 49elec 7959 . . . . . . . . . . . . . . . 16 (𝑤 ∈ [𝑤] 𝑤 𝑤)
5148, 50sylibr 225 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
52 ssel 3752 . . . . . . . . . . . . . . 15 ([𝑤] 𝑍 → (𝑤 ∈ [𝑤] 𝑤𝑍))
5351, 52syl5com 31 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → ([𝑤] 𝑍𝑤𝑍))
541, 2, 3, 4, 5, 6, 7sylow2alem1 18259 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
5549ensn1 8194 . . . . . . . . . . . . . . . . 17 {𝑤} ≈ 1𝑜
5654, 55syl6eqbr 4836 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑍) → [𝑤] ≈ 1𝑜)
5756ex 398 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5857adantr 467 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5953, 58syld 47 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ([𝑤] 𝑍 → [𝑤] ≈ 1𝑜))
6040, 45, 59ectocld 7987 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 / )) → (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜))
6160impr 443 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
6239, 61sylan2b 582 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
63 en1b 8198 . . . . . . . . . 10 (𝑧 ≈ 1𝑜𝑧 = { 𝑧})
6462, 63sylib 209 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 = { 𝑧})
6564fveq2d 6352 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = (♯‘{ 𝑧}))
66 vuniex 7122 . . . . . . . . 9 𝑧 ∈ V
67 hashsng 13383 . . . . . . . . 9 ( 𝑧 ∈ V → (♯‘{ 𝑧}) = 1)
6866, 67ax-mp 5 . . . . . . . 8 (♯‘{ 𝑧}) = 1
6965, 68syl6eq 2824 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = 1)
7069sumeq2dv 14663 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1)
71 ssrab2 3843 . . . . . . . . . . . 12 {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢} ⊆ 𝑌
726, 71eqsstri 3791 . . . . . . . . . . 11 𝑍𝑌
73 ssfi 8357 . . . . . . . . . . 11 ((𝑌 ∈ Fin ∧ 𝑍𝑌) → 𝑍 ∈ Fin)
745, 72, 73sylancl 575 . . . . . . . . . 10 (𝜑𝑍 ∈ Fin)
75 hashcl 13371 . . . . . . . . . 10 (𝑍 ∈ Fin → (♯‘𝑍) ∈ ℕ0)
7674, 75syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑍) ∈ ℕ0)
7776nn0cnd 11577 . . . . . . . 8 (𝜑 → (♯‘𝑍) ∈ ℂ)
7877mulid1d 10280 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = (♯‘𝑍))
796, 5rabexd 4961 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
80 inss2 3989 . . . . . . . . . . 11 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍
81 pwexg 4994 . . . . . . . . . . . 12 (𝑍 ∈ Fin → 𝒫 𝑍 ∈ V)
8274, 81syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑍 ∈ V)
83 ssexg 4952 . . . . . . . . . . 11 ((((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍 ∧ 𝒫 𝑍 ∈ V) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
8480, 82, 83sylancr 576 . . . . . . . . . 10 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
857relopabi 5396 . . . . . . . . . . . . . . . . 17 Rel
86 relssdmrn 5811 . . . . . . . . . . . . . . . . 17 (Rel ⊆ (dom × ran ))
8785, 86ax-mp 5 . . . . . . . . . . . . . . . 16 ⊆ (dom × ran )
88 erdm 7927 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → dom = 𝑌)
8921, 88syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom = 𝑌)
9089, 5eqeltrd 2853 . . . . . . . . . . . . . . . . 17 (𝜑 → dom ∈ Fin)
91 errn 7939 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → ran = 𝑌)
9221, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran = 𝑌)
9392, 5eqeltrd 2853 . . . . . . . . . . . . . . . . 17 (𝜑 → ran ∈ Fin)
94 xpexg 7128 . . . . . . . . . . . . . . . . 17 ((dom ∈ Fin ∧ ran ∈ Fin) → (dom × ran ) ∈ V)
9590, 93, 94syl2anc 574 . . . . . . . . . . . . . . . 16 (𝜑 → (dom × ran ) ∈ V)
96 ssexg 4952 . . . . . . . . . . . . . . . 16 (( ⊆ (dom × ran ) ∧ (dom × ran ) ∈ V) → ∈ V)
9787, 95, 96sylancr 576 . . . . . . . . . . . . . . 15 (𝜑 ∈ V)
9897adantr 467 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → ∈ V)
99 simpr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑍) → 𝑤𝑍)
10072, 99sseldi 3756 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → 𝑤𝑌)
101 ecelqsg 7975 . . . . . . . . . . . . . 14 (( ∈ V ∧ 𝑤𝑌) → [𝑤] ∈ (𝑌 / ))
10298, 100, 101syl2anc 574 . . . . . . . . . . . . 13 ((𝜑𝑤𝑍) → [𝑤] ∈ (𝑌 / ))
10354, 102eqeltrrd 2854 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ (𝑌 / ))
104 snelpwi 5054 . . . . . . . . . . . . 13 (𝑤𝑍 → {𝑤} ∈ 𝒫 𝑍)
105104adantl 468 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ 𝒫 𝑍)
106103, 105elind 3956 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
107106ex 398 . . . . . . . . . 10 (𝜑 → (𝑤𝑍 → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍)))
108 simpr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
10980, 108sseldi 3756 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ 𝒫 𝑍)
110109elpwid 4319 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
11164, 110eqsstr3d 3796 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → { 𝑧} ⊆ 𝑍)
11266snss 4462 . . . . . . . . . . . 12 ( 𝑧𝑍 ↔ { 𝑧} ⊆ 𝑍)
113111, 112sylibr 225 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
114113ex 398 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) → 𝑧𝑍))
115 sneq 4336 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → {𝑤} = { 𝑧})
116115eqeq2d 2784 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑧 = {𝑤} ↔ 𝑧 = { 𝑧}))
11764, 116syl5ibrcom 238 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤}))
118117adantrl 696 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
119 unieq 4593 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → 𝑧 = {𝑤})
12049unisn 4600 . . . . . . . . . . . . 13 {𝑤} = 𝑤
121119, 120syl6req 2825 . . . . . . . . . . . 12 (𝑧 = {𝑤} → 𝑤 = 𝑧)
122118, 121impbid1 216 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
123122ex 398 . . . . . . . . . 10 (𝜑 → ((𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤})))
12479, 84, 107, 114, 123en3d 8167 . . . . . . . . 9 (𝜑𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍))
125 hashen 13361 . . . . . . . . . 10 ((𝑍 ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin) → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
12674, 35, 125syl2anc 574 . . . . . . . . 9 (𝜑 → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
127124, 126mpbird 248 . . . . . . . 8 (𝜑 → (♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)))
128127oveq1d 6827 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
12978, 128eqtr3d 2810 . . . . . 6 (𝜑 → (♯‘𝑍) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
13038, 70, 1293eqtr4rd 2819 . . . . 5 (𝜑 → (♯‘𝑍) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧))
131130oveq1d 6827 . . . 4 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
13231, 32, 1313eqtr4rd 2819 . . 3 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌))
133 hashcl 13371 . . . . . 6 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
1345, 133syl 17 . . . . 5 (𝜑 → (♯‘𝑌) ∈ ℕ0)
135134nn0cnd 11577 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℂ)
136 diffi 8369 . . . . . 6 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
13723, 136syl 17 . . . . 5 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
138 eldifi 3890 . . . . . 6 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
139138, 30sylan2 581 . . . . 5 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℂ)
140137, 139fsumcl 14694 . . . 4 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ∈ ℂ)
141135, 77, 140subaddd 10633 . . 3 (𝜑 → (((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ↔ ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌)))
142132, 141mpbird 248 . 2 (𝜑 → ((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
1438, 142breqtrrd 4825 1 (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 383   = wceq 1634  wcel 2148  wral 3064  wrex 3065  {crab 3068  Vcvv 3355  cdif 3726  cun 3727  cin 3728  wss 3729  c0 4073  𝒫 cpw 4307  {csn 4326  {cpr 4328   cuni 4585   class class class wbr 4797  {copab 4859   × cxp 5261  dom cdm 5263  ran crn 5264  Rel wrel 5268  cfv 6042  (class class class)co 6812  1𝑜c1o 7727   Er wer 7914  [cec 7915   / cqs 7916  cen 8127  Fincfn 8130  cc 10157  1c1 10160   + caddc 10162   · cmul 10164  cmin 10489  0cn0 11516  chash 13343  Σcsu 14646  cdvds 15211  Basecbs 16084   GrpAct cga 17949   pGrp cpgp 18173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-inf2 8723  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-fal 1640  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-disj 4766  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-se 5223  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-isom 6051  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-2o 7735  df-oadd 7738  df-omul 7739  df-er 7917  df-ec 7919  df-qs 7923  df-map 8032  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-sup 8525  df-inf 8526  df-oi 8592  df-card 8986  df-acn 8989  df-cda 9213  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-2 11302  df-3 11303  df-n0 11517  df-xnn0 11588  df-z 11602  df-uz 11911  df-q 12014  df-rp 12053  df-fz 12556  df-fzo 12696  df-fl 12823  df-mod 12899  df-seq 13031  df-exp 13090  df-fac 13287  df-bc 13316  df-hash 13344  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-clim 14449  df-sum 14647  df-dvds 15212  df-gcd 15446  df-prm 15614  df-pc 15769  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-0g 16330  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-submnd 17564  df-grp 17653  df-minusg 17654  df-sbg 17655  df-mulg 17769  df-subg 17819  df-eqg 17821  df-ga 17950  df-od 18175  df-pgp 18177
This theorem is referenced by:  sylow2blem3  18264  sylow3lem6  18274
  Copyright terms: Public domain W3C validator