![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | mtbid 313 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: sylnibr 318 ssnelpss 3751 fr3nr 7021 omopthi 7782 inf3lem6 8568 rankxpsuc 8783 cflim2 9123 ssfin4 9170 fin23lem30 9202 isf32lem5 9217 gchhar 9539 qextlt 12072 qextle 12073 fzneuz 12459 vdwnn 15749 psgnunilem3 17962 efgredlemb 18205 gsumzsplit 18373 lspexchn2 19179 lspindp2l 19182 lspindp2 19183 psrlidm 19451 mplcoe1 19513 mplcoe5 19516 evlslem1 19563 ptopn2 21435 regr1lem2 21591 rnelfmlem 21803 hauspwpwf1 21838 tsmssplit 22002 reconn 22678 itg2splitlem 23560 itg2split 23561 itg2cn 23575 wilthlem2 24840 bposlem9 25062 nfrgr2v 27252 hatomistici 29349 nn0min 29695 2sqcoprm 29775 qqhf 30158 hasheuni 30275 oddpwdc 30544 ballotlemimin 30695 ballotlemfrcn0 30719 bnj1388 31227 efrunt 31716 dfon2lem4 31815 dfon2lem7 31818 nandsym1 32546 atbase 34894 llnbase 35113 lplnbase 35138 lvolbase 35182 dalem48 35324 lhpbase 35602 cdlemg17pq 36277 cdlemg19 36289 cdlemg21 36291 dvh3dim3N 37055 rmspecnonsq 37789 setindtr 37908 flcidc 38061 fmul01lt1lem2 40135 icccncfext 40418 stoweidlem14 40549 stoweidlem26 40561 stirlinglem5 40613 fourierdlem42 40684 fourierdlem62 40703 fourierdlem66 40707 hoicvr 41083 |
Copyright terms: Public domain | W3C validator |