![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 214 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylnbi 319 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: naecoms 2346 fvmptex 6333 f0cli 6410 1st2val 7238 2nd2val 7239 mpt2xopxprcov0 7388 rankvaln 8700 alephcard 8931 alephnbtwn 8932 cfub 9109 cardcf 9112 cflecard 9113 cfle 9114 cflim2 9123 cfidm 9135 itunitc1 9280 ituniiun 9282 domtriom 9303 alephreg 9442 pwcfsdom 9443 cfpwsdom 9444 adderpq 9816 mulerpq 9817 sumz 14497 sumss 14499 prod1 14718 prodss 14721 eleenn 25821 afvres 41573 afvco2 41577 ndmaovcl 41604 |
Copyright terms: Public domain | W3C validator |