![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | simp3 1133 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1477 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: nppcan2 10502 nnncan 10506 nnncan2 10508 ltdivmul 11088 ledivmul 11089 ltdiv23 11104 lediv23 11105 xrmaxlt 12203 xrltmin 12204 xrmaxle 12205 xrlemin 12206 swrdtrcfv 13639 dvdssub2 15223 dvdsgcdb 15462 lcmdvdsb 15526 vdwapun 15878 poslubdg 17348 ipodrsfi 17362 mulginvcom 17764 matinvgcell 20441 mdetrsca2 20610 mdetrlin2 20613 mdetunilem5 20622 decpmatmul 20777 islp3 21150 bddibl 23803 nvpi 27829 nvabs 27834 nmmulg 30319 subdivcomb2 31917 lineid 32494 oplecon1b 34989 opltcon1b 34993 oldmm2 35006 oldmj2 35010 cmt3N 35039 2llnneN 35196 cvrexchlem 35206 pmod2iN 35636 polcon2N 35706 paddatclN 35736 osumcllem3N 35745 ltrnval1 35921 cdleme48fv 36287 cdlemg33b 36495 trlcolem 36514 cdlemh 36605 cdlemi1 36606 cdlemi2 36607 cdlemi 36608 cdlemk4 36622 cdlemk19u1 36757 cdlemn3 36986 hgmapfval 37678 pell14qrgap 37939 stoweidlem22 40740 stoweidlem26 40744 sigarexp 41552 pfxtrcfv 41909 pfxco 41946 lindszr 42766 |
Copyright terms: Public domain | W3C validator |