![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylbb2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | biimpri 218 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 207 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: ftpg 6587 wfrlem5 7589 funsnfsupp 8466 fin23lem40 9385 s4f1o 13883 fsumsplitsnun 14703 fsumsplitsnunOLD 14705 lcmcllem 15531 mat1dimbas 20500 pmatcollpw3fi 20812 nbgrssvwo2 26478 nbgrssvwo2OLD 26481 wlkn0 26747 clwlkcompbp 26909 clwlkclwwlkflem 27148 konigsberglem5 27429 eulerpartlemgs2 30772 bnj1476 31245 bnj1204 31408 dfon2lem3 32016 frrlem5 32111 bj-ccinftydisj 33429 nninfnub 33878 ispridl2 34168 rp-isfinite6 38384 fnresfnco 41730 |
Copyright terms: Public domain | W3C validator |