![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
Ref | Expression |
---|---|
sylanl1.1 | ⊢ (𝜑 → 𝜓) |
sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | anim1i 591 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 487 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: adantlll 754 adantllr 755 isocnv 6620 odi 7704 oeoelem 7723 mapxpen 8167 xadddilem 12162 pcqmul 15605 infpnlem1 15661 setsn0fun 15942 chpdmat 20694 neitr 21032 hausflimi 21831 nmoix 22580 nmoleub 22582 metdsre 22703 usgr2edg1 26149 crctcshwlkn0 26769 sspph 27838 unoplin 28907 hmoplin 28929 chirredlem1 29377 mdsymlem2 29391 foresf1o 29469 ordtconnlem1 30098 isbasisrelowllem1 33333 isbasisrelowllem2 33334 lindsdom 33533 matunitlindflem1 33535 matunitlindflem2 33536 poimirlem25 33564 poimirlem29 33568 heicant 33574 cnambfre 33588 itg2addnclem 33591 ftc1anclem5 33619 ftc1anc 33623 rrnequiv 33764 isfldidl 33997 ispridlc 33999 supxrgelem 39866 supminfxr 40007 reccot 42827 rectan 42828 |
Copyright terms: Public domain | W3C validator |