![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 499 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 455 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 |
This theorem is referenced by: pm5.75 1014 sbcom2 2593 sbal1 2608 sbal2 2609 mpteq12f 4865 otthg 5081 fmptsng 6578 f1oiso 6744 mpt2eq123 6861 elovmpt2rab 7027 elovmpt2rab1 7028 ovmpt3rabdm 7039 elovmpt3rab1 7040 tfindsg 7207 findsg 7240 dfoprab4f 7375 opiota 7378 fmpt2x 7386 oalimcl 7794 oeeui 7836 nnmword 7867 isinf 8329 elfi 8475 brwdomn0 8630 alephval3 9133 dfac2b 9153 dfac2OLD 9155 fin17 9418 isfin7-2 9420 ltmpi 9928 addclprlem1 10040 distrlem4pr 10050 1idpr 10053 qreccl 12011 0fz1 12568 zmodid2 12906 ccatrcl1 13576 eqwrds3 13914 divgcdcoprm0 15586 sscntz 17966 gexdvds 18206 cnprest 21314 txrest 21655 ptrescn 21663 flimrest 22007 txflf 22030 fclsrest 22048 tsmssubm 22166 mbfi1fseqlem4 23705 axcontlem7 26071 uhgreq12g 26181 nbuhgr2vtx1edgb 26471 wlkcomp 26761 uhgrwkspthlem2 26885 clwlkcomp 26910 wlknwwlksnbij 27026 hashecclwwlkn1 27235 umgrhashecclwwlk 27236 numclwwlk1lem2fo 27544 ubthlem1 28066 pjimai 29375 atcv1 29579 chirredi 29593 bj-restsn 33367 wl-sbcom2d-lem1 33676 wl-sbalnae 33679 ptrest 33741 poimirlem28 33770 heicant 33777 ftc1anclem1 33817 sbeqi 34300 ralbi12f 34301 iineq12f 34305 brcnvepres 34376 nzss 39042 raaan2 41695 rngcinv 42509 rngcinvALTV 42521 ringcinv 42560 ringcinvALTV 42584 snlindsntorlem 42787 |
Copyright terms: Public domain | W3C validator |