![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 268 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: sylan9bbr 737 bi2anan9 935 baibd 968 rbaibd 969 syl3an9b 1437 nanbi12 1497 sbcom2 2473 2sb5rf 2479 2sb6rf 2480 eqeq12 2664 eleq12 2720 sbhypf 3284 ceqsrex2v 3369 sseq12 3661 2ralsng 4252 rexprg 4267 rextpg 4269 breq12 4690 reusv2lem5 4903 opelopabg 5022 brabg 5023 opelopabgf 5024 opelopab2 5025 rbropapd 5044 ralxpf 5301 feq23 6067 f00 6125 fconstg 6130 f1oeq23 6168 f1o00 6209 fnelfp 6482 fnelnfp 6484 isofrlem 6630 f1oiso 6641 riota1a 6670 cbvmpt2x 6775 caovord 6887 caovord3 6889 f1oweALT 7194 oaordex 7683 oaass 7686 odi 7704 findcard2s 8242 unfilem1 8265 suppeqfsuppbi 8330 oieu 8485 r1pw 8746 carddomi2 8834 isacn 8905 cdadom2 9047 axdc2 9309 alephval2 9432 fpwwe2cbv 9490 fpwwe2lem2 9492 fpwwecbv 9504 fpwwelem 9505 canthwelem 9510 canthwe 9511 distrlem4pr 9886 axpre-sup 10028 nn0ind-raph 11515 xnn0xadd0 12115 elfz 12370 elfzp12 12457 expeq0 12930 leiso 13281 wrd2ind 13523 trcleq12lem 13778 dfrtrclrec2 13841 shftfib 13856 absdvdsb 15047 dvdsabsb 15048 dvdsabseq 15082 unbenlem 15659 isprs 16977 isdrs 16981 pltval 17007 lublecllem 17035 istos 17082 isdlat 17240 znfld 19957 tgss2 20839 isopn2 20884 cnpf2 21102 lmbr 21110 isreg2 21229 fclsrest 21875 qustgplem 21971 ustuqtoplem 22090 xmetec 22286 nmogelb 22567 metdstri 22701 tchcph 23082 ulmval 24179 2lgslem1a 25161 iscgrg 25452 istrlson 26659 ispthson 26694 isspthson 26695 elwwlks2on 26925 eupth2lem1 27196 eigrei 28821 eigorthi 28824 jplem1 29255 superpos 29341 chrelati 29351 vtocl2d 29442 br8d 29548 issiga 30302 eulerpartlemgvv 30566 br8 31772 br6 31773 br4 31774 brsegle 32340 topfne 32474 tailfb 32497 filnetlem1 32498 nndivsub 32581 bj-elequ12 32793 bj-rest10 33166 isbasisrelowllem1 33333 isbasisrelowllem2 33334 wl-2sb6d 33471 curf 33517 curunc 33521 poimirlem26 33565 mblfinlem2 33577 cnambfre 33588 itgaddnclem2 33599 ftc1anclem1 33615 grpokerinj 33822 rngoisoval 33906 smprngopr 33981 ax12eq 34545 ax12el 34546 2llnjN 35171 2lplnj 35224 elpadd0 35413 lauteq 35699 lpolconN 37093 rexrabdioph 37675 eliunov2 38288 nzss 38833 iotasbc2 38938 cbvmpt2x2 42439 |
Copyright terms: Public domain | W3C validator |