Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl7bi Structured version   Visualization version   GIF version

Theorem syl7bi 245
 Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.)
Hypotheses
Ref Expression
syl7bi.1 (𝜑𝜓)
syl7bi.2 (𝜒 → (𝜃 → (𝜓𝜏)))
Assertion
Ref Expression
syl7bi (𝜒 → (𝜃 → (𝜑𝜏)))

Proof of Theorem syl7bi
StepHypRef Expression
1 syl7bi.1 . . 3 (𝜑𝜓)
21biimpi 206 . 2 (𝜑𝜓)
3 syl7bi.2 . 2 (𝜒 → (𝜃 → (𝜓𝜏)))
42, 3syl7 74 1 (𝜒 → (𝜃 → (𝜑𝜏)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197 This theorem is referenced by:  nfimt  1861  rspct  3333  zfpair  4934  gruen  9672  axpre-sup  10028  nn0lt2  11478  fzofzim  12554  ndvdssub  15180  alexsubALT  21902  clwlkclwwlklem2a  26964  erclwwlktr  26979  erclwwlkntr  27035  dfon2lem8  31819  prtlem15  34479  prtlem18  34481
 Copyright terms: Public domain W3C validator