MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6d Structured version   Visualization version   GIF version

Theorem syl6d 75
Description: A nested syllogism deduction. Deduction associated with syl6 35. (Contributed by NM, 11-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.)
Hypotheses
Ref Expression
syl6d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
syl6d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
syl6d (𝜑 → (𝜓 → (𝜒𝜏)))

Proof of Theorem syl6d
StepHypRef Expression
1 syl6d.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 syl6d.2 . . 3 (𝜑 → (𝜃𝜏))
32a1d 25 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
41, 3syldd 72 1 (𝜑 → (𝜓 → (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl8  76  sbi1  2420  omlimcl  7703  ltexprlem7  9902  axpre-sup  10028  caubnd  14142  ubthlem1  27854  poimirlem29  33568  ee13  39027  ssralv2  39054  rspsbc2  39061  truniALT  39068  stgoldbwt  41989
  Copyright terms: Public domain W3C validator