![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5rbb | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
syl5rbb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl5rbb.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5rbb | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | syl5rbb.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5bb 272 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 213 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: syl5rbbr 275 necon1abid 2861 necon4abid 2863 uniiunlem 3724 r19.9rzv 4098 inimasn 5585 fnresdisj 6039 f1oiso 6641 reldm 7263 rdglim2 7573 mptelixpg 7987 1idpr 9889 nndiv 11099 fz1sbc 12454 grpid 17504 znleval 19951 fbunfip 21720 lmflf 21856 metcld2 23151 lgsne0 25105 isuvtx 26343 isuvtxaOLD 26344 loopclwwlkn1b 27005 clwwlknun 27087 clwwlknunOLD 27091 frgrncvvdeqlem2 27280 isph 27805 ofpreima 29593 eulerpartlemd 30556 bnj168 30924 opelco3 31802 wl-2sb6d 33471 poimirlem26 33565 cnambfre 33588 heibor1 33739 opltn0 34795 cvrnbtwn2 34880 cvrnbtwn4 34884 atlltn0 34911 pmapjat1 35457 dih1dimatlem 36935 2rexfrabdioph 37677 dnwech 37935 rfovcnvf1od 38615 uneqsn 38638 csbabgOLD 39367 2reu4a 41510 lighneallem2 41848 isrnghm 42217 rnghmval2 42220 |
Copyright terms: Public domain | W3C validator |