Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl5d Structured version   Visualization version   GIF version

Theorem syl5d 73
 Description: A nested syllogism deduction. Deduction associated with syl5 34. (Contributed by NM, 14-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.)
Hypotheses
Ref Expression
syl5d.1 (𝜑 → (𝜓𝜒))
syl5d.2 (𝜑 → (𝜃 → (𝜒𝜏)))
Assertion
Ref Expression
syl5d (𝜑 → (𝜃 → (𝜓𝜏)))

Proof of Theorem syl5d
StepHypRef Expression
1 syl5d.1 . . 3 (𝜑 → (𝜓𝜒))
21a1d 25 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
3 syl5d.2 . 2 (𝜑 → (𝜃 → (𝜒𝜏)))
42, 3syldd 72 1 (𝜑 → (𝜃 → (𝜓𝜏)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7 This theorem is referenced by:  syl7  74  syl9  77  imim12d  81  sbi1  2420  mopick  2564  isofrlem  6630  kmlem9  9018  squeeze0  10964  lcmfunsnlem1  15397  fgss2  21725  ordcmp  32571  linepsubN  35356  pmapsub  35372  bgoldbnnsum3prm  42017
 Copyright terms: Public domain W3C validator