![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version |
Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: spfwOLD 2008 nfald 2201 cbv2h 2305 exdistrf 2364 euind 3426 reuind 3444 sbcimdv 3531 sbcimdvOLD 3532 cores 5676 tz7.7 5787 tz7.49 7585 omsmolem 7778 php 8185 hta 8798 carddom2 8841 infdif 9069 isf32lem3 9215 alephval2 9432 cfpwsdom 9444 nqerf 9790 zeo 11501 o1rlimmul 14393 catideu 16383 catpropd 16416 ufileu 21770 iscau2 23121 scvxcvx 24757 issgon 30314 cvmsss2 31382 onsucconni 32561 onsucsuccmpi 32567 bj-ssbft 32767 bj-ax12v3ALT 32801 bj-cbv2hv 32856 bj-sbsb 32949 wl-dveeq12 33441 lpolsatN 37094 lpolpolsatN 37095 frege70 38544 sspwtrALT 39366 snlindsntor 42585 0setrec 42775 |
Copyright terms: Public domain | W3C validator |